Base field \(\Q(\zeta_{7})^+\)
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 2 x + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 2*x + 1)
gp (2.8): K = nfinit(a^3 - a^2 - 2*a + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^2 + a - 1, 1, a^2 + a - 1, -20*a^2 - 15*a + 5, -113*a^2 - 88*a + 63]),K);
sage: E = EllipticCurve(K, [a^2 + a - 1, 1, a^2 + a - 1, -20*a^2 - 15*a + 5, -113*a^2 - 88*a + 63])
gp (2.8): E = ellinit([a^2 + a - 1, 1, a^2 + a - 1, -20*a^2 - 15*a + 5, -113*a^2 - 88*a + 63],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
\(\mathfrak{N} \) | = | \((97,-4 a^{2} + 3 a + 4)\) | = | \( \left(-4 a^{2} + 3 a + 4\right) \) |
magma: Conductor(E);
sage: E.conductor()
| ||||
\(N(\mathfrak{N}) \) | = | \( 97 \) | = | \( 97 \) |
magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
\(\mathfrak{D}\) | = | \((88529281,a + 51116896,a^{2} + 68517572)\) | = | \( \left(-4 a^{2} + 3 a + 4\right)^{4} \) |
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
\(N(\mathfrak{D})\) | = | \( 88529281 \) | = | \( 97^{4} \) |
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
\(j\) | = | \( \frac{4015292960676897540}{88529281} a^{2} + \frac{3220015004154662275}{88529281} a - \frac{2228319255078131746}{88529281} \) | ||
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
\( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
\( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
Structure: | \(\Z/2\Z\times\Z/2\Z\) |
---|---|
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Generators: | $\left(2 a^{2} + 2 a - 1 : -5 a^{2} - 4 a + 3 : 1\right)$,$\left(-a^{2} - \frac{3}{4} a - \frac{5}{2} : 3 a^{2} + \frac{21}{8} a - \frac{17}{8} : 1\right)$ |
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
|
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\( \left(-4 a^{2} + 3 a + 4\right) \) | \(97\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
97.2-a
consists of curves linked by isogenies of
degrees dividing 8.