\\ Pari/GP code for working with elliptic curve 3.3.49.1-41.3-a1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the base number field: K = nfinit(Pol(Vecrev([1, -2, -1, 1]))); \\ Define the curve: E = ellinit([Pol(Vecrev([1,0,0])),Pol(Vecrev([-3,-1,1])),Pol(Vecrev([0,0,0])),Pol(Vecrev([-68,101,-91])),Pol(Vecrev([-304,852,-646]))], K); \\ Compute the conductor: ellglobalred(E)[1] \\ Compute the norm of the conductor: idealnorm(ellglobalred(E)[1]) \\ Compute the discriminant: E.disc \\ Compute the norm of the discriminant: norm(E.disc) \\ Compute the j-invariant: E.j \\ Compute the torsion subgroup: T = elltors(E); T[2] \\ Compute the order of the torsion subgroup: T[1] \\ Compute the generators of the torsion subgroup: T[3]