Properties

Label 3.3.49.1-392.1-a3
Base field \(\Q(\zeta_{7})^+\)
Conductor norm \( 392 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{7})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -1, 1]))
 
gp: K = nfinit(Polrev([1, -2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}-{x}^{2}+\left(-142a^{2}+177a-72\right){x}+976a^{2}-1465a+488\)
sage: E = EllipticCurve([K([-2,0,1]),K([-1,0,0]),K([-2,1,1]),K([-72,177,-142]),K([488,-1465,976])])
 
gp: E = ellinit([Polrev([-2,0,1]),Polrev([-1,0,0]),Polrev([-2,1,1]),Polrev([-72,177,-142]),Polrev([488,-1465,976])], K);
 
magma: E := EllipticCurve([K![-2,0,1],K![-1,0,0],K![-2,1,1],K![-72,177,-142],K![488,-1465,976]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4a^2+2a-12)\) = \((-a^2-a+2)^{2}\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 392 \) = \(7^{2}\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((46118408)\) = \((-a^2-a+2)^{24}\cdot(2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 98089590466850004173312 \) = \(7^{24}\cdot8^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4956477625}{941192} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{4} a^{2} - \frac{9}{4} a + \frac{9}{4} : -\frac{13}{8} a^{2} - \frac{13}{8} a + \frac{13}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.0416032606389760905024101750861285159 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.0059433229484251557860585964408755023 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a+2)\) \(7\) \(4\) \(I_{18}^{*}\) Additive \(-1\) \(2\) \(24\) \(18\)
\((2)\) \(8\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 392.1-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q\) 98.a3