Properties

Label 3.3.49.1-104.2-a1
Base field \(\Q(\zeta_{7})^+\)
Conductor norm \( 104 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{7})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -1, 1]))
 
gp: K = nfinit(Polrev([1, -2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-10a^{2}+51a-69\right){x}-105a^{2}+256a-199\)
sage: E = EllipticCurve([K([-1,1,1]),K([-2,0,1]),K([1,1,0]),K([-69,51,-10]),K([-199,256,-105])])
 
gp: E = ellinit([Polrev([-1,1,1]),Polrev([-2,0,1]),Polrev([1,1,0]),Polrev([-69,51,-10]),Polrev([-199,256,-105])], K);
 
magma: E := EllipticCurve([K![-1,1,1],K![-2,0,1],K![1,1,0],K![-69,51,-10],K![-199,256,-105]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-4a-4)\) = \((2)\cdot(a^2-2a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 104 \) = \(8\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-50176a^2+28544a+70016)\) = \((2)^{7}\cdot(a^2-2a-2)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -131593177923584 \) = \(-8^{7}\cdot13^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{274090208021491107}{2007952544} a^{2} - \frac{304013417326180219}{4015905088} a - \frac{2464236390737668359}{8031810176} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.69324032669447162146915182688251960685 \)
Tamagawa product: \( 7 \)  =  \(7\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 0.69324032669447162146915182688251960685 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(8\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((a^2-2a-2)\) \(13\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.6[3]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 104.2-a consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.