Properties

Label 3.3.49.1-104.1-b2
Base field \(\Q(\zeta_{7})^+\)
Conductor norm \( 104 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{7})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -1, 1]))
 
gp: K = nfinit(Polrev([1, -2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(14a^{2}-9a-27\right){x}-28a^{2}+93a-74\)
sage: E = EllipticCurve([K([-1,1,1]),K([-3,0,1]),K([-1,0,1]),K([-27,-9,14]),K([-74,93,-28])])
 
gp: E = ellinit([Polrev([-1,1,1]),Polrev([-3,0,1]),Polrev([-1,0,1]),Polrev([-27,-9,14]),Polrev([-74,93,-28])], K);
 
magma: E := EllipticCurve([K![-1,1,1],K![-3,0,1],K![-1,0,1],K![-27,-9,14],K![-74,93,-28]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2+2a-6)\) = \((2)\cdot(a^2+a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 104 \) = \(8\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9896a^2-20056a-7432)\) = \((2)^{3}\cdot(a^2+a-3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5429503678976 \) = \(-8^{3}\cdot13^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5104794835848393}{42417997492} a^{2} - \frac{5647619780915441}{84835994984} a - \frac{5729473372444955}{21208998746} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{2} - 2 a + 12 : 15 a^{2} - 17 a - 16 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 4.6827996322662158290378578085291613168 \)
Tamagawa product: \( 9 \)  =  \(1\cdot3^{2}\)
Torsion order: \(3\)
Leading coefficient: \( 0.66897137603803083271969397264702304525 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(8\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((a^2+a-3)\) \(13\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 104.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.