Properties

Label 3.3.321.1-27.2-a4
Base field 3.3.321.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.321.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-2a^{2}+3a+6\right){x}-a^{2}-a+4\)
sage: E = EllipticCurve([K([-3,-1,1]),K([3,0,-1]),K([-2,0,1]),K([6,3,-2]),K([4,-1,-1])])
 
gp: E = ellinit([Polrev([-3,-1,1]),Polrev([3,0,-1]),Polrev([-2,0,1]),Polrev([6,3,-2]),Polrev([4,-1,-1])], K);
 
magma: E := EllipticCurve([K![-3,-1,1],K![3,0,-1],K![-2,0,1],K![6,3,-2],K![4,-1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-7)\) = \((a+1)^{2}\cdot(-a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((36a^2-27a-36)\) = \((a+1)^{7}\cdot(-a^2+a+3)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 531441 \) = \(3^{7}\cdot3^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{20552}{27} a^{2} + \frac{32584}{9} a - \frac{24773}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(1 : -2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 93.745022057813975188690723698831480553 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(4\)
Leading coefficient: \( 1.3080842244010714462633965744987198100 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(3\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)
\((-a^2+a+3)\) \(3\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 27.2-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.