Properties

Label 3.3.316.1-8.1-a3
Base field 3.3.316.1
Conductor \((2)\)
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([2, -4, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a^{2}-a+2\right){x}^{2}+\left(696542a^{2}-368715a-2959749\right){x}+463057095a^{2}-245103850a-1967594769\)
sage: E = EllipticCurve([K([0,1,0]),K([2,-1,-1]),K([0,1,0]),K([-2959749,-368715,696542]),K([-1967594769,-245103850,463057095])])
 
gp: E = ellinit([Pol(Vecrev([0,1,0])),Pol(Vecrev([2,-1,-1])),Pol(Vecrev([0,1,0])),Pol(Vecrev([-2959749,-368715,696542])),Pol(Vecrev([-1967594769,-245103850,463057095]))], K);
 
magma: E := EllipticCurve([K![0,1,0],K![2,-1,-1],K![0,1,0],K![-2959749,-368715,696542],K![-1967594769,-245103850,463057095]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((a)^{2}\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2^{2}\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8a^2+32)\) = \((a)^{8}\cdot(-a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2048 \) = \(2^{8}\cdot2^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{596658698344264096415}{8} a^{2} + \frac{157910670855855346189}{4} a + \frac{1267643331281111416669}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{939}{4} a^{2} - 121 a - 992 : -\frac{455}{8} a^{2} + 26 a + \frac{939}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5.40513688874578 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 0.684141088092391 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((-a+1)\) \(2\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 8.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.