Properties

Label 3.3.316.1-64.7-d5
Base field 3.3.316.1
Conductor norm \( 64 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(2665494175a^{2}-1410890261a-11326059353\right){x}-101934795285681a^{2}+53955777236750a+433135270894324\)
sage: E = EllipticCurve([K([-3,0,1]),K([3,0,-1]),K([0,0,0]),K([-11326059353,-1410890261,2665494175]),K([433135270894324,53955777236750,-101934795285681])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([3,0,-1]),Polrev([0,0,0]),Polrev([-11326059353,-1410890261,2665494175]),Polrev([433135270894324,53955777236750,-101934795285681])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![3,0,-1],K![0,0,0],K![-11326059353,-1410890261,2665494175],K![433135270894324,53955777236750,-101934795285681]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-3a-1)\) = \((-a+1)^{6}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(2^{6}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((76a^2-105a-249)\) = \((-a+1)^{22}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4194304 \) = \(2^{22}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{200481}{16} a^{2} - \frac{325027}{8} a + \frac{233973}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{35347}{2} a^{2} + 9355 a + \frac{150195}{2} : \frac{2223279}{4} a^{2} - \frac{1176819}{4} a - \frac{4723513}{2} : 1\right)$
Height \(0.81026412734311478958373883853510748600\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(28603 a^{2} - 15140 a - 121538 : 39736 a^{2} - 21033 a - 168844 : 1\right)$ $\left(-\frac{44763}{4} a^{2} + \frac{11847}{2} a + \frac{190205}{4} : -\frac{124373}{8} a^{2} + 8229 a + \frac{528477}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.81026412734311478958373883853510748600 \)
Period: \( 75.058615256171572543621122153228743827 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 2.5659304579191107995173056971277748399 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(2\) \(4\) \(I_{12}^{*}\) Additive \(1\) \(6\) \(22\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 64.7-d consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.