Properties

Label 3.3.316.1-64.7-a5
Base field 3.3.316.1
Conductor norm \( 64 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-2894790049560a^{2}+1532260369223a+12300369748958\right){x}-6521086825648874308a^{2}+3451719377275691295a+27709014383527172465\)
sage: E = EllipticCurve([K([1,1,0]),K([2,0,-1]),K([-3,0,1]),K([12300369748958,1532260369223,-2894790049560]),K([27709014383527172465,3451719377275691295,-6521086825648874308])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([2,0,-1]),Polrev([-3,0,1]),Polrev([12300369748958,1532260369223,-2894790049560]),Polrev([27709014383527172465,3451719377275691295,-6521086825648874308])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![2,0,-1],K![-3,0,1],K![12300369748958,1532260369223,-2894790049560],K![27709014383527172465,3451719377275691295,-6521086825648874308]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-3a-1)\) = \((-a+1)^{6}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(2^{6}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-927a^2+218a+5833)\) = \((-a+1)^{34}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17179869184 \) = \(2^{34}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4108077233}{65536} a^{2} - \frac{5810733523}{32768} a + \frac{2294990397}{32768} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1673875}{4} a^{2} - \frac{443005}{2} a - \frac{7112529}{4} : -307718 a^{2} + \frac{1303039}{8} a + \frac{10460291}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 28.641533397613050134485065988446878809 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 1.6112121344811538096296176438321353910 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(2\) \(4\) \(I_{24}^{*}\) Additive \(-1\) \(6\) \(34\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 64.7-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.