Properties

Label 3.3.316.1-37.1-b1
Base field 3.3.316.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-3\right){x}{y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-31a^{2}-107a-94\right){x}+323a^{2}+821a+427\)
sage: E = EllipticCurve([K([-3,1,1]),K([-4,-1,1]),K([0,0,0]),K([-94,-107,-31]),K([427,821,323])])
 
gp: E = ellinit([Polrev([-3,1,1]),Polrev([-4,-1,1]),Polrev([0,0,0]),Polrev([-94,-107,-31]),Polrev([427,821,323])], K);
 
magma: E := EllipticCurve([K![-3,1,1],K![-4,-1,1],K![0,0,0],K![-94,-107,-31],K![427,821,323]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2+2a+5)\) = \((-2a^2+2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^2-2a-5)\) = \((-2a^2+2a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -37 \) = \(-37\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{574631192853100701}{37} a^{2} - \frac{1616786066804313023}{37} a + \frac{633688955893848379}{37} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{2} + 3 a + \frac{15}{2} : -\frac{11}{4} a^{2} - \frac{3}{4} a + 8 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 142.67437650673744985301710776629404148 \)
Tamagawa product: \( 1 \)
Torsion order: \(4\)
Leading coefficient: \( 0.50162879618717017685430332315291933782 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^2+2a+5)\) \(37\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 37.1-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.