Properties

Label 3.3.316.1-32.1-c6
Base field 3.3.316.1
Conductor norm \( 32 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{2}+a-2\right){x}^{2}+\left(30392171a^{2}-16087094a-129140630\right){x}-133378539946a^{2}+70599472536a+566744160836\)
sage: E = EllipticCurve([K([0,1,0]),K([-2,1,1]),K([-2,0,1]),K([-129140630,-16087094,30392171]),K([566744160836,70599472536,-133378539946])])
 
gp: E = ellinit([Polrev([0,1,0]),Polrev([-2,1,1]),Polrev([-2,0,1]),Polrev([-129140630,-16087094,30392171]),Polrev([566744160836,70599472536,-133378539946])], K);
 
magma: E := EllipticCurve([K![0,1,0],K![-2,1,1],K![-2,0,1],K![-129140630,-16087094,30392171],K![566744160836,70599472536,-133378539946]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2+8)\) = \((a)^{4}\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 32 \) = \(2^{4}\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((12a^2-8a-8)\) = \((a)^{12}\cdot(-a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16384 \) = \(2^{12}\cdot2^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8525185037}{4} a^{2} - \frac{12150636535}{2} a + \frac{5069473275}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-1551 a^{2} + 823 a + 6594 : -1399 a^{2} + 734 a + 5932 : 1\right)$
Height \(0.13208232855614960084821185901011960167\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(3079 a^{2} - 1628 a - 13080 : -726 a^{2} + 382 a + 3080 : 1\right)$ $\left(-1537 a^{2} + 812 a + 6528 : 362 a^{2} - 190 a - 1536 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.13208232855614960084821185901011960167 \)
Period: \( 121.25025374181267045045508338521034179 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.3513725426372475802369470900166293301 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(1\) \(4\) \(12\) \(0\)
\((-a+1)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 32.1-c consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.