Properties

Base field 3.3.316.1
Label 3.3.316.1-32.1-a2
Conductor \((4,2 a^{2} - 8)\)
Conductor norm \( 32 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 4*x + 2)
gp (2.8): K = nfinit(a^3 - a^2 - 4*a + 2);

Weierstrass equation

\( y^2 + a x y + a y = x^{3} + \left(a^{2} + a - 2\right) x^{2} + \left(68 a^{2} - 33 a - 285\right) x - 445 a^{2} + 236 a + 1891 \)
magma: E := ChangeRing(EllipticCurve([a, a^2 + a - 2, a, 68*a^2 - 33*a - 285, -445*a^2 + 236*a + 1891]),K);
sage: E = EllipticCurve(K, [a, a^2 + a - 2, a, 68*a^2 - 33*a - 285, -445*a^2 + 236*a + 1891])
gp (2.8): E = ellinit([a, a^2 + a - 2, a, 68*a^2 - 33*a - 285, -445*a^2 + 236*a + 1891],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((4,2 a^{2} - 8)\) = \( \left(-a\right)^{4} \cdot \left(-a + 1\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 32 \) = \( 2^{5} \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((16,16 a,2 a^{2} + 4 a + 4)\) = \( \left(-a\right)^{8} \cdot \left(-a + 1\right) \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 512 \) = \( 2^{9} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{1898088202191}{2} a^{2} + 1274493239347 a - 810136780017 \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-\frac{13}{4} a^{2} + a + 12 : \frac{9}{8} a^{2} - \frac{13}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) \(2\) \(2\) \(I_{0}^*\) Additive \(-1\) \(4\) \(8\) \(0\)
\( \left(-a + 1\right) \) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 32.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.