Properties

Label 3.3.316.1-242.3-d3
Base field 3.3.316.1
Conductor norm \( 242 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-3\right){x}{y}={x}^{3}+\left(-a^{2}+a+4\right){x}^{2}+\left(-105a^{2}-138a+94\right){x}-1246a^{2}-1676a+1059\)
sage: E = EllipticCurve([K([-3,1,1]),K([4,1,-1]),K([0,0,0]),K([94,-138,-105]),K([1059,-1676,-1246])])
 
gp: E = ellinit([Polrev([-3,1,1]),Polrev([4,1,-1]),Polrev([0,0,0]),Polrev([94,-138,-105]),Polrev([1059,-1676,-1246])], K);
 
magma: E := EllipticCurve([K![-3,1,1],K![4,1,-1],K![0,0,0],K![94,-138,-105],K![1059,-1676,-1246]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^2-5)\) = \((-a+1)\cdot(a^2-a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 242 \) = \(2\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((7190a^2-5223a-15017)\) = \((-a+1)^{14}\cdot(a^2-a-1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3512055906304 \) = \(2^{14}\cdot11^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1196719965343}{1982464} a^{2} + \frac{318008627741}{991232} a + \frac{2546638361901}{991232} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} - 4 a - 1 : 10 a^{2} + 9 a - 10 : 1\right)$
Height \(0.33447197324945116921576176724356068144\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{19}{4} a^{2} + \frac{9}{2} a - \frac{25}{4} : -\frac{17}{2} a^{2} - \frac{107}{8} a + \frac{37}{8} : 1\right)$ $\left(-2 a^{2} - 2 a + 2 : 4 a^{2} + 6 a - 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.33447197324945116921576176724356068144 \)
Period: \( 15.235042414369934954026970153058945020 \)
Tamagawa product: \( 56 \)  =  \(( 2 \cdot 7 )\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 3.0098798375705510165960148062390052883 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(2\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)
\((a^2-a-1)\) \(11\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 242.3-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.