Properties

Label 3.3.316.1-242.3-b1
Base field 3.3.316.1
Conductor norm \( 242 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(-17089005789166286516a^{2}+9045494102123436959a+72613587255077018672\right){x}+239491187919164651072372415896a^{2}-126766656560365448750343743032a-1017631715112124311122237879909\)
sage: E = EllipticCurve([K([-3,1,1]),K([-4,0,1]),K([-3,0,1]),K([72613587255077018672,9045494102123436959,-17089005789166286516]),K([-1017631715112124311122237879909,-126766656560365448750343743032,239491187919164651072372415896])])
 
gp: E = ellinit([Polrev([-3,1,1]),Polrev([-4,0,1]),Polrev([-3,0,1]),Polrev([72613587255077018672,9045494102123436959,-17089005789166286516]),Polrev([-1017631715112124311122237879909,-126766656560365448750343743032,239491187919164651072372415896])], K);
 
magma: E := EllipticCurve([K![-3,1,1],K![-4,0,1],K![-3,0,1],K![72613587255077018672,9045494102123436959,-17089005789166286516],K![-1017631715112124311122237879909,-126766656560365448750343743032,239491187919164651072372415896]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^2-5)\) = \((-a+1)\cdot(a^2-a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 242 \) = \(2\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((129a^2-8a-525)\) = \((-a+1)^{2}\cdot(a^2-a-1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -7086244 \) = \(-2^{2}\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{427}{4} a^{2} + \frac{383}{2} a - \frac{47}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7220172645}{4} a^{2} + \frac{1910878545}{2} a + \frac{15339764137}{2} : -\frac{16662524523}{8} a^{2} + \frac{4409875253}{4} a + \frac{35400704217}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 21.383451496225434832249753864267358563 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.2029131279220859830258195999765890905 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a^2-a-1)\) \(11\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 242.3-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.