Properties

Label 3.3.316.1-16.5-b6
Base field 3.3.316.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(-41098595441852a^{2}+21754167987381a+174633707952162\right){x}-893212511727360662557a^{2}+472792192035817395818a+3795385492745243685734\)
sage: E = EllipticCurve([K([1,1,0]),K([-3,0,1]),K([-3,0,1]),K([174633707952162,21754167987381,-41098595441852]),K([3795385492745243685734,472792192035817395818,-893212511727360662557])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([-3,0,1]),Polrev([-3,0,1]),Polrev([174633707952162,21754167987381,-41098595441852]),Polrev([3795385492745243685734,472792192035817395818,-893212511727360662557])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![-3,0,1],K![-3,0,1],K![174633707952162,21754167987381,-41098595441852],K![3795385492745243685734,472792192035817395818,-893212511727360662557]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-a-7)\) = \((-a+1)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2-10a-25)\) = \((-a+1)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -16384 \) = \(-2^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{427}{4} a^{2} + \frac{383}{2} a - \frac{47}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2955508 a^{2} + 1564399 a + 12558368 : 20995768103 a^{2} - 11113408169 a - 89213969375 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 100.29520746374981014118875307615266929 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 0.70525577773956474808140129581548975701 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(2\) \(2\) \(I_{6}^{*}\) Additive \(-1\) \(4\) \(14\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 16.5-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.