Properties

Label 3.3.316.1-16.5-b1
Base field 3.3.316.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(100434688208a^{2}-53161745688a-426761105098\right){x}-23577610985047683a^{2}+12480020414213596a+100184582628814686\)
sage: E = EllipticCurve([K([-3,0,1]),K([-3,0,1]),K([-3,0,1]),K([-426761105098,-53161745688,100434688208]),K([100184582628814686,12480020414213596,-23577610985047683])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([-3,0,1]),Polrev([-3,0,1]),Polrev([-426761105098,-53161745688,100434688208]),Polrev([100184582628814686,12480020414213596,-23577610985047683])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![-3,0,1],K![-3,0,1],K![-426761105098,-53161745688,100434688208],K![100184582628814686,12480020414213596,-23577610985047683]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-a-7)\) = \((-a+1)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-35a^2+8a+147)\) = \((-a+1)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 65536 \) = \(2^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{200481}{16} a^{2} - \frac{325027}{8} a + \frac{233973}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{274783}{4} a^{2} + \frac{72723}{2} a + \frac{1167589}{4} : -\frac{763473}{8} a^{2} + 50515 a + \frac{3244105}{8} : 1\right)$ $\left(-3029 a^{2} + 1603 a + 12870 : 72168569 a^{2} - 38200020 a - 306654392 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 200.59041492749962028237750615230533858 \)
Tamagawa product: \( 4 \)
Torsion order: \(8\)
Leading coefficient: \( 0.70525577773956474808140129581548975701 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+1)\) \(2\) \(4\) \(I_{8}^{*}\) Additive \(-1\) \(4\) \(16\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 16.5-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.