Properties

Label 3.3.316.1-16.4-a2
Base field 3.3.316.1
Conductor \((a^2-a-6)\)
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([2, -4, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(68a^{2}-44a-303\right){x}-73a^{2}+16a+269\)
sage: E = EllipticCurve([K([-3,0,1]),K([1,0,0]),K([1,1,0]),K([-303,-44,68]),K([269,16,-73])])
 
gp: E = ellinit([Pol(Vecrev([-3,0,1])),Pol(Vecrev([1,0,0])),Pol(Vecrev([1,1,0])),Pol(Vecrev([-303,-44,68])),Pol(Vecrev([269,16,-73]))], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![1,0,0],K![1,1,0],K![-303,-44,68],K![269,16,-73]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-6)\) = \((a)\cdot(-a+1)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2\cdot2^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a+10)\) = \((a)^{2}\cdot(-a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(2^{2}\cdot2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 2838366 a^{2} + \frac{6985779}{2} a - \frac{4542013}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\times\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(4 a^{2} - 3 a - 19 : 7 a^{2} - 3 a - 28 : 1\right)$ $\left(-\frac{3}{4} a^{2} - \frac{1}{2} a + \frac{5}{4} : \frac{3}{8} a^{2} + \frac{1}{2} a + \frac{1}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 116.166304031692 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.63371628951688 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a+1)\) \(2\) \(2\) \(I_1^{*}\) Additive \(1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16.4-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.