Properties

Label 3.3.257.1-9.2-b1
Base field 3.3.257.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.257.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}-a+3\right){x}^{2}+\left(-2a^{2}+14a-9\right){x}-18a^{2}-32a+31\)
sage: E = EllipticCurve([K([-3,0,1]),K([3,-1,-1]),K([-3,0,1]),K([-9,14,-2]),K([31,-32,-18])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([3,-1,-1]),Polrev([-3,0,1]),Polrev([-9,14,-2]),Polrev([31,-32,-18])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![3,-1,-1],K![-3,0,1],K![-9,14,-2],K![31,-32,-18]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-3)\) = \((a^2-3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8960a^2-8625a-86679)\) = \((a^2-3)^{30}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -205891132094649 \) = \(-3^{30}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{169564940890516}{282429536481} a^{2} - \frac{93767995435637}{282429536481} a + \frac{1032142453154629}{282429536481} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{4} a^{2} + \frac{3}{4} a - \frac{5}{2} : -\frac{7}{8} a^{2} - a + \frac{3}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 13.936530590796870044582065501877265212 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 0.86933689320315439361291414709939263717 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-3)\) \(3\) \(4\) \(I_{24}^{*}\) Additive \(-1\) \(2\) \(30\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.