Properties

Label 3.3.257.1-9.1-b2
Base field 3.3.257.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.257.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{2}+a-3\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-88a^{2}+260a-152\right){x}+13a^{2}-45a+32\)
sage: E = EllipticCurve([K([-2,0,1]),K([2,0,-1]),K([-3,1,1]),K([-152,260,-88]),K([32,-45,13])])
 
gp: E = ellinit([Polrev([-2,0,1]),Polrev([2,0,-1]),Polrev([-3,1,1]),Polrev([-152,260,-88]),Polrev([32,-45,13])], K);
 
magma: E := EllipticCurve([K![-2,0,1],K![2,0,-1],K![-3,1,1],K![-152,260,-88],K![32,-45,13]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+1)\) = \((-a^2+a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17a^2-106a-313)\) = \((-a^2+a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -43046721 \) = \(-9^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{637339485144964}{6561} a^{2} + \frac{182573580343201}{6561} a + \frac{893210373928667}{2187} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{2} + 6 a - 2 : -9 a^{2} + 23 a - 10 : 1\right)$
Height \(0.27989160820191013115830156123915777315\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{11}{4} a^{2} - \frac{33}{4} a + \frac{23}{4} : -\frac{27}{8} a^{2} + \frac{51}{8} a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.27989160820191013115830156123915777315 \)
Period: \( 33.229373729370235498361074888256737123 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.87023537058655678172011958705859581018 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+1)\) \(9\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.