Properties

Label 3.3.257.1-19.1-a1
Base field 3.3.257.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.257.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(22a^{2}-a-116\right){x}+36a^{2}-32a-143\)
sage: E = EllipticCurve([K([-2,1,1]),K([1,-1,0]),K([-2,0,1]),K([-116,-1,22]),K([-143,-32,36])])
 
gp: E = ellinit([Polrev([-2,1,1]),Polrev([1,-1,0]),Polrev([-2,0,1]),Polrev([-116,-1,22]),Polrev([-143,-32,36])], K);
 
magma: E := EllipticCurve([K![-2,1,1],K![1,-1,0],K![-2,0,1],K![-116,-1,22],K![-143,-32,36]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-4)\) = \((a^2+a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-22036a^2+19283a-80162)\) = \((a^2+a-4)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -2213314919066161 \) = \(-19^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{33777701165536011237}{2213314919066161} a^{2} - \frac{277355301401585077884}{2213314919066161} a + \frac{184960608190583522339}{2213314919066161} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{2} - \frac{1}{4} a - \frac{7}{4} : -\frac{11}{8} a^{2} - \frac{11}{8} a + \frac{15}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.7935002821141892026738381607094177349 \)
Tamagawa product: \( 12 \)
Torsion order: \(2\)
Leading coefficient: \( 1.4584355722445973542924784050373971881 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+a-4)\) \(19\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.