Properties

Label 3.3.229.1-14.1-b5
Base field 3.3.229.1
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 12 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.229.1

Generator \(a\), with minimal polynomial \( x^{3} - 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([-1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+{y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(-a^{2}-4a\right){x}+a^{2}+a\)
sage: E = EllipticCurve([K([-2,0,1]),K([-2,-1,1]),K([1,0,0]),K([0,-4,-1]),K([0,1,1])])
 
gp: E = ellinit([Polrev([-2,0,1]),Polrev([-2,-1,1]),Polrev([1,0,0]),Polrev([0,-4,-1]),Polrev([0,1,1])], K);
 
magma: E := EllipticCurve([K![-2,0,1],K![-2,-1,1],K![1,0,0],K![0,-4,-1],K![0,1,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((a+1)\cdot(-a^2+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^2-3a+5)\) = \((a+1)^{4}\cdot(-a^2+2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 784 \) = \(2^{4}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2334119}{784} a^{2} - \frac{3847349}{784} a + \frac{1948435}{784} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{1}{4} a^{2} + \frac{1}{2} a + \frac{3}{4} : -\frac{1}{8} a^{2} - \frac{3}{8} a : 1\right)$ $\left(a^{2} + 3 a + 1 : -6 a^{2} - 13 a - 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 342.33371535775197455865191864295447637 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(12\)
Leading coefficient: \( 0.62839024075361314906521287939860880115 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-a^2+2)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 14.1-b consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.