Properties

Label 3.3.229.1-14.1-b12
Base field 3.3.229.1
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.229.1

Generator \(a\), with minimal polynomial \( x^{3} - 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([-1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}+a-3\right){x}^{2}+\left(-138a^{2}+327a-71\right){x}+637a^{2}-1062a-603\)
sage: E = EllipticCurve([K([1,0,0]),K([-3,1,1]),K([-3,0,1]),K([-71,327,-138]),K([-603,-1062,637])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-3,1,1]),Polrev([-3,0,1]),Polrev([-71,327,-138]),Polrev([-603,-1062,637])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-3,1,1],K![-3,0,1],K![-71,327,-138],K![-603,-1062,637]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((a+1)\cdot(-a^2+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-987a^2+166a+12389)\) = \((a+1)^{6}\cdot(-a^2+2)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 885842380864 \) = \(2^{6}\cdot7^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{144450740091078986229263}{885842380864} a^{2} + \frac{305499959947366052778019}{885842380864} a + \frac{68301210357720562240171}{885842380864} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(3 a^{2} - 2 a - 11 : -2 a^{2} + a + 7 : 1\right)$ $\left(a^{2} - 9 a + \frac{51}{4} : -a^{2} + \frac{9}{2} a - \frac{39}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.3395132473657773066417021970917495623 \)
Tamagawa product: \( 24 \)  =  \(2\cdot( 2^{2} \cdot 3 )\)
Torsion order: \(4\)
Leading coefficient: \( 0.62839024075361314906521287939860880115 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a^2+2)\) \(7\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 14.1-b consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.