Properties

Label 3.3.1957.1-16.3-a8
Base field 3.3.1957.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1957.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, -9, -1, 1]))
 
gp: K = nfinit(Polrev([10, -9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}-6\right){y}={x}^{3}+\left(-a^{2}+7\right){x}^{2}+\left(-26984a^{2}-51530a+92639\right){x}+5547729a^{2}+10604763a-19054809\)
sage: E = EllipticCurve([K([0,1,0]),K([7,0,-1]),K([-6,0,1]),K([92639,-51530,-26984]),K([-19054809,10604763,5547729])])
 
gp: E = ellinit([Polrev([0,1,0]),Polrev([7,0,-1]),Polrev([-6,0,1]),Polrev([92639,-51530,-26984]),Polrev([-19054809,10604763,5547729])], K);
 
magma: E := EllipticCurve([K![0,1,0],K![7,0,-1],K![-6,0,1],K![92639,-51530,-26984],K![-19054809,10604763,5547729]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a-2)\) = \((2,a)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((44a^2+105a-238)\) = \((2,a)^{22}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4194304 \) = \(-2^{22}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{22236981725625867673}{1024} a^{2} + \frac{42506064262246252101}{1024} a - \frac{76376288557509693211}{1024} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(29 a^{2} + 57 a - 103 : -43 a^{2} - 78 a + 146 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10.791193051225322567973758583518985157 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 3.0491870187343809346819739264245610779 \)
Analytic order of Ш: \( 100 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(2\) \(I_{14}^{*}\) Additive \(-1\) \(4\) \(22\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 16.3-a consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.