Base field 3.3.1957.1
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 9*x + 10)
gp (2.8): K = nfinit(a^3 - a^2 - 9*a + 10);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a, -a^2 + 7, a^2 - 6, -27104*a^2 - 51045*a + 92244, 5544986*a^2 + 10615813*a - 19063791]),K);
sage: E = EllipticCurve(K, [a, -a^2 + 7, a^2 - 6, -27104*a^2 - 51045*a + 92244, 5544986*a^2 + 10615813*a - 19063791])
gp (2.8): E = ellinit([a, -a^2 + 7, a^2 - 6, -27104*a^2 - 51045*a + 92244, 5544986*a^2 + 10615813*a - 19063791],K)
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((16,a + 2)\) | = | \( \left(2, a\right)^{4} \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 16 \) | = | \( 2^{4} \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \((\Delta)\) | = | \((17592186044416,a + 16471139736178,a^{2} + 3603941139772)\) | = | \( \left(2, a\right)^{44} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\Delta)\) | = | \( 17592186044416 \) | = | \( 2^{44} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(\mathfrak{D}\) | = | \((4294967296,-145 a^{2} + 671 a - 1582)\) | = | \( \left(2, a\right)^{32} \) |
| \(N(\mathfrak{D})\) | = | \( 4294967296 \) | = | \( 2^{32} \) |
| \(j\) | = | \( \frac{1208201331713038647}{1048576} a^{2} - \frac{4882016462354803125}{1048576} a + \frac{3972767044836889003}{1048576} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/2\Z\times\Z/2\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generators: | $\left(32 a^{2} + 45 a - 94 : -39 a^{2} - 97 a + 163 : 1\right)$,$\left(28 a^{2} + 61 a - 106 : -45 a^{2} - 73 a + 143 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(2, a\right) \) | \(2\) | \(4\) | \(I_{24}^*\) | Additive | \(-1\) | \(4\) | \(32\) | \(20\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2Cs |
| \(5\) | 5B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 5 and 10.
Its isogeny class
16.3-a
consists of curves linked by isogenies of
degrees dividing 20.