Properties

Label 3.3.1957.1-11.1-b2
Base field 3.3.1957.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1957.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, -9, -1, 1]))
 
gp: K = nfinit(Polrev([10, -9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a^{2}-6\right){x}^{2}+\left(23317913a^{2}+44572268a-80088908\right){x}-401919492463a^{2}-768270441835a+1380453494659\)
sage: E = EllipticCurve([K([1,1,0]),K([-6,0,1]),K([0,1,0]),K([-80088908,44572268,23317913]),K([1380453494659,-768270441835,-401919492463])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([-6,0,1]),Polrev([0,1,0]),Polrev([-80088908,44572268,23317913]),Polrev([1380453494659,-768270441835,-401919492463])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![-6,0,1],K![0,1,0],K![-80088908,44572268,23317913],K![1380453494659,-768270441835,-401919492463]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((11,a-4)\) = \((11,a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-78432a^2+77121a+694319)\) = \((11,a-4)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -45949729863572161 \) = \(-11^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{52028892561854339324}{45949729863572161} a^{2} + \frac{184047527372651237376}{45949729863572161} a - \frac{86097660316480487429}{45949729863572161} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{44563}{16} a^{2} + \frac{85191}{16} a - \frac{153049}{16} : \frac{32054567}{64} a^{2} + \frac{61272379}{64} a - \frac{110096357}{64} : 1\right)$
Height \(3.0838184486394974690009033885897681373\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{4275}{4} a^{2} + \frac{4087}{2} a - \frac{14681}{4} : -\frac{4181}{2} a^{2} - \frac{7993}{2} a + \frac{57431}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.0838184486394974690009033885897681373 \)
Period: \( 2.7653467736644736139366071600251171096 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.1566294317998090015866604447952603614 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((11,a-4)\) \(11\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 11.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.