Properties

Label 3.3.1957.1-10.1-b4
Base field 3.3.1957.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1957.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, -9, -1, 1]))
 
gp: K = nfinit(Polrev([10, -9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(-a^{2}+a+7\right){x}^{2}+\left(-1739a^{2}-3401a+5749\right){x}-112010a^{2}-214834a+382499\)
sage: E = EllipticCurve([K([1,0,0]),K([7,1,-1]),K([0,1,0]),K([5749,-3401,-1739]),K([382499,-214834,-112010])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([7,1,-1]),Polrev([0,1,0]),Polrev([5749,-3401,-1739]),Polrev([382499,-214834,-112010])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![7,1,-1],K![0,1,0],K![5749,-3401,-1739],K![382499,-214834,-112010]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a)\) = \((2,a)\cdot(5,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1533a^2-3290a+12900)\) = \((2,a)^{2}\cdot(5,a)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 610351562500 \) = \(2^{2}\cdot5^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2981793872800340768201}{610351562500} a^{2} - \frac{386027265671168228289}{610351562500} a + \frac{26400141019045592285199}{610351562500} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(28 a^{2} + 50 a - 105 : 353 a^{2} + 676 a - 1208 : 1\right)$
Height \(1.0844934498889695265129388136941793425\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(17 a^{2} + 29 a - \frac{269}{4} : -\frac{17}{2} a^{2} - 15 a + \frac{269}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0844934498889695265129388136941793425 \)
Period: \( 1.9098549873380146151666310342383169586 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.2473626093044014725037954734378495952 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((5,a)\) \(5\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 10.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.