Properties

Base field 3.3.1957.1
Label 3.3.1957.1-10.1-b3
Conductor \((10,a)\)
Conductor norm \( 10 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.3.1957.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 9*x + 10)
 
gp (2.8): K = nfinit(a^3 - a^2 - 9*a + 10);
 

Weierstrass equation

\( y^2 + x y + a y = x^{3} + \left(-a^{2} + a + 7\right) x^{2} + \left(-124 a^{2} - 236 a + 439\right) x - 1495 a^{2} - 2854 a + 5139 \)
magma: E := ChangeRing(EllipticCurve([1, -a^2 + a + 7, a, -124*a^2 - 236*a + 439, -1495*a^2 - 2854*a + 5139]),K);
 
sage: E = EllipticCurve(K, [1, -a^2 + a + 7, a, -124*a^2 - 236*a + 439, -1495*a^2 - 2854*a + 5139])
 
gp (2.8): E = ellinit([1, -a^2 + a + 7, a, -124*a^2 - 236*a + 439, -1495*a^2 - 2854*a + 5139],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((10,a)\) = \( \left(2, a\right) \cdot \left(5, a\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 10 \) = \( 2 \cdot 5 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((160000,a + 49010,a^{2} + 99900)\) = \( \left(2, a\right)^{8} \cdot \left(5, a\right)^{4} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 160000 \) = \( 2^{8} \cdot 5^{4} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{62236119}{160000} a^{2} + \frac{114531691}{160000} a + \frac{72099019}{160000} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\times\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generators: $\left(4 a^{2} + 7 a - 14 : -2 a^{2} - 4 a + 7 : 1\right)$,$\left(-\frac{3}{4} a^{2} - \frac{11}{4} a + \frac{1}{4} : \frac{3}{8} a^{2} + \frac{7}{8} a - \frac{1}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2, a\right) \) \(2\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\( \left(5, a\right) \) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 10.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.