Base field 3.3.1957.1
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 9*x + 10)
gp (2.8): K = nfinit(a^3 - a^2 - 9*a + 10);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a, -a^2 + a + 5, a^2 + a - 6, 11*a^2 + 2*a - 87, -25*a^2 - 12*a + 190]),K);
sage: E = EllipticCurve(K, [a, -a^2 + a + 5, a^2 + a - 6, 11*a^2 + 2*a - 87, -25*a^2 - 12*a + 190])
gp (2.8): E = ellinit([a, -a^2 + a + 5, a^2 + a - 6, 11*a^2 + 2*a - 87, -25*a^2 - 12*a + 190],K)
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((10,a)\) | = | \( \left(2, a\right) \cdot \left(5, a\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 10 \) | = | \( 2 \cdot 5 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \((\Delta)\) | = | \((6710886400,a + 1819204210,a^{2} + 3684803900)\) | = | \( \left(2, a\right)^{28} \cdot \left(5, a\right)^{2} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\Delta)\) | = | \( 6710886400 \) | = | \( 2^{28} \cdot 5^{2} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(\mathfrak{D}\) | = | \((1638400,29 a^{2} - 36 a - 60)\) | = | \( \left(2, a\right)^{16} \cdot \left(5, a\right)^{2} \) |
| \(N(\mathfrak{D})\) | = | \( 1638400 \) | = | \( 2^{16} \cdot 5^{2} \) |
| \(j\) | = | \( -\frac{96448750817}{1638400} a^{2} - \frac{12818175213}{1638400} a + \frac{855539380083}{1638400} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/8\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(3 : -a^{2} - 3 a + 3 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(2, a\right) \) | \(2\) | \(16\) | \(I_{16}\) | Split multiplicative | \(-1\) | \(1\) | \(16\) | \(16\) |
| \( \left(5, a\right) \) | \(5\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
10.1-a
consists of curves linked by isogenies of
degrees dividing 8.