Properties

Label 3.3.169.1-31.3-b1
Base field 3.3.169.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.169.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(929a^{2}-1177a-3394\right){x}+21516a^{2}-27403a-78558\)
sage: E = EllipticCurve([K([-3,0,1]),K([-4,0,1]),K([-3,-1,1]),K([-3394,-1177,929]),K([-78558,-27403,21516])])
 
gp: E = ellinit([Polrev([-3,0,1]),Polrev([-4,0,1]),Polrev([-3,-1,1]),Polrev([-3394,-1177,929]),Polrev([-78558,-27403,21516])], K);
 
magma: E := EllipticCurve([K![-3,0,1],K![-4,0,1],K![-3,-1,1],K![-3394,-1177,929],K![-78558,-27403,21516]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-3a-4)\) = \((a^2-3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17885a^2-28211a+75240)\) = \((a^2-3a-4)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -819628286980801 \) = \(-31^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1475484619244572890625}{819628286980801} a^{2} + \frac{3509758045748731549120}{819628286980801} a + \frac{1066714472957007302564}{819628286980801} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4393913935995161893122560470467492203 \)
Tamagawa product: \( 10 \)
Torsion order: \(1\)
Leading coefficient: \( 1.1072241489227047610094277284974994002 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-3a-4)\) \(31\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 31.3-b consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.