Properties

Label 3.3.169.1-25.3-a1
Base field 3.3.169.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.169.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-52a^{2}-78a-20\right){x}-511a^{2}-821a-173\)
sage: E = EllipticCurve([K([0,1,0]),K([-4,-1,1]),K([0,1,0]),K([-20,-78,-52]),K([-173,-821,-511])])
 
gp: E = ellinit([Polrev([0,1,0]),Polrev([-4,-1,1]),Polrev([0,1,0]),Polrev([-20,-78,-52]),Polrev([-173,-821,-511])], K);
 
magma: E := EllipticCurve([K![0,1,0],K![-4,-1,1],K![0,1,0],K![-20,-78,-52],K![-173,-821,-511]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2+3a+4)\) = \((-a^2+2a+3)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^2-7a+9)\) = \((-a^2+2a+3)^{4}\cdot(-a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3125 \) = \(5^{4}\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{53152820281148}{625} a^{2} + \frac{88975367883001}{625} a + \frac{21722839234996}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{4} a^{2} - 3 a + 2 : \frac{17}{8} a^{2} + a + \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 26.128842818392810704480527797767173645 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.0049554930151081040184818383756605248 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+2a+3)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-a+1)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 25.3-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.