Properties

Label 3.3.1620.1-6.1-a1
Base field 3.3.1620.1
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1620.1

Generator \(a\), with minimal polynomial \( x^{3} - 12 x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -12, 0, 1]))
 
gp: K = nfinit(Polrev([-14, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-7\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(1725112a^{2}-2399476a-17363891\right){x}+1475906218126a^{2}-2052847260013a-14855556426422\)
sage: E = EllipticCurve([K([-7,-1,1]),K([0,-1,0]),K([1,1,0]),K([-17363891,-2399476,1725112]),K([-14855556426422,-2052847260013,1475906218126])])
 
gp: E = ellinit([Polrev([-7,-1,1]),Polrev([0,-1,0]),Polrev([1,1,0]),Polrev([-17363891,-2399476,1725112]),Polrev([-14855556426422,-2052847260013,1475906218126])], K);
 
magma: E := EllipticCurve([K![-7,-1,1],K![0,-1,0],K![1,1,0],K![-17363891,-2399476,1725112],K![-14855556426422,-2052847260013,1475906218126]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+3a+4)\) = \((a+2)\cdot(a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((432a^2-648a-4320)\) = \((a+2)^{10}\cdot(a+1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -60466176 \) = \(-2^{10}\cdot3^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{11038321}{1296} a^{2} - \frac{22299361}{648} a - \frac{5084711}{162} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4589 a^{2} + 6382 a + 46193 : -602602 a^{2} + 838160 a + 6065428 : 1\right)$
Height \(0.12091350567705845082777508021559359756\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.12091350567705845082777508021559359756 \)
Period: \( 46.212281324297175678538093735020035970 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 1.6659269743379270174493606873323946670 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(2\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)
\((a+1)\) \(3\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 6.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.