Properties

Label 3.3.1620.1-12.1-b2
Base field 3.3.1620.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1620.1

Generator \(a\), with minimal polynomial \( x^{3} - 12 x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -12, 0, 1]))
 
gp: K = nfinit(Polrev([-14, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2a-8\right){x}{y}+\left(a^{2}-a-8\right){y}={x}^{3}+{x}^{2}+\left(11a^{2}-16a-107\right){x}+41a^{2}-57a-416\)
sage: E = EllipticCurve([K([-8,-2,1]),K([1,0,0]),K([-8,-1,1]),K([-107,-16,11]),K([-416,-57,41])])
 
gp: E = ellinit([Polrev([-8,-2,1]),Polrev([1,0,0]),Polrev([-8,-1,1]),Polrev([-107,-16,11]),Polrev([-416,-57,41])], K);
 
magma: E := EllipticCurve([K![-8,-2,1],K![1,0,0],K![-8,-1,1],K![-107,-16,11],K![-416,-57,41]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2a-6)\) = \((a+2)^{2}\cdot(a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(2^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^2+6a+40)\) = \((a+2)^{4}\cdot(a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -48 \) = \(-2^{4}\cdot3\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{79936}{3} a^{2} + \frac{112384}{3} a + \frac{807680}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{2} - \frac{3}{2} a - 10 : a^{2} - \frac{3}{2} a - \frac{23}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 93.907656001114668960914805133357891645 \)
Tamagawa product: \( 3 \)  =  \(3\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.7498658535513205537645973047745315056 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(2\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((a+1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 12.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.