Properties

Label 3.3.1620.1-12.1-a1
Base field 3.3.1620.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1620.1

Generator \(a\), with minimal polynomial \( x^{3} - 12 x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -12, 0, 1]))
 
gp: K = nfinit(Polrev([-14, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2a-8\right){x}{y}+a{y}={x}^{3}+\left(a^{2}-2a-9\right){x}^{2}+\left(-2a^{2}-19a-24\right){x}-18a^{2}-67a-59\)
sage: E = EllipticCurve([K([-8,-2,1]),K([-9,-2,1]),K([0,1,0]),K([-24,-19,-2]),K([-59,-67,-18])])
 
gp: E = ellinit([Polrev([-8,-2,1]),Polrev([-9,-2,1]),Polrev([0,1,0]),Polrev([-24,-19,-2]),Polrev([-59,-67,-18])], K);
 
magma: E := EllipticCurve([K![-8,-2,1],K![-9,-2,1],K![0,1,0],K![-24,-19,-2],K![-59,-67,-18]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2a-6)\) = \((a+2)^{2}\cdot(a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(2^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-18a-36)\) = \((a+2)^{4}\cdot(a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11664 \) = \(2^{4}\cdot3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{704}{9} a^{2} - \frac{10496}{9} a - \frac{2048}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} + a : -a^{2} + 14 a + 23 : 1\right)$
Height \(0.20714446147268395423798205046441467093\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} a + 4 : \frac{1}{2} a^{2} - \frac{3}{2} a - \frac{3}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.20714446147268395423798205046441467093 \)
Period: \( 53.854810009646635823456964364041035565 \)
Tamagawa product: \( 18 \)  =  \(3\cdot( 2 \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 3.7417441227464911443557404085236588094 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(2\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((a+1)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 12.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.