Properties

Label 3.3.1620.1-10.2-b1
Base field 3.3.1620.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1620.1

Generator \(a\), with minimal polynomial \( x^{3} - 12 x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -12, 0, 1]))
 
gp: K = nfinit(Polrev([-14, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2a-7\right){x}{y}+\left(a^{2}-a-8\right){y}={x}^{3}+\left(a^{2}-a-7\right){x}^{2}+\left(2a^{2}-8a-18\right){x}-a^{2}-14a-24\)
sage: E = EllipticCurve([K([-7,-2,1]),K([-7,-1,1]),K([-8,-1,1]),K([-18,-8,2]),K([-24,-14,-1])])
 
gp: E = ellinit([Polrev([-7,-2,1]),Polrev([-7,-1,1]),Polrev([-8,-1,1]),Polrev([-18,-8,2]),Polrev([-24,-14,-1])], K);
 
magma: E := EllipticCurve([K![-7,-2,1],K![-7,-1,1],K![-8,-1,1],K![-18,-8,2],K![-24,-14,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+12)\) = \((a+2)\cdot(a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((128a^2-4672a-11008)\) = \((a+2)^{19}\cdot(a+3)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -204800000000 \) = \(-2^{19}\cdot5^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{18345049}{80000} a^{2} - \frac{1419129}{5000} a + \frac{7693911}{10000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.6208123900816951025784859338347793770 \)
Tamagawa product: \( 8 \)  =  \(1\cdot2^{3}\)
Torsion order: \(1\)
Leading coefficient: \( 1.3159632507107133019710674161694664924 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(2\) \(1\) \(I_{19}\) Non-split multiplicative \(1\) \(1\) \(19\) \(19\)
\((a+3)\) \(5\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 10.2-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.