Properties

Label 3.3.1620.1-10.1-d1
Base field 3.3.1620.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1620.1

Generator \(a\), with minimal polynomial \( x^{3} - 12 x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -12, 0, 1]))
 
gp: K = nfinit(Polrev([-14, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-7\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+3a+9\right){x}^{2}+\left(-316a^{2}-383a+91\right){x}+6778a^{2}+15090a+7885\)
sage: E = EllipticCurve([K([-7,-1,1]),K([9,3,-1]),K([1,1,0]),K([91,-383,-316]),K([7885,15090,6778])])
 
gp: E = ellinit([Polrev([-7,-1,1]),Polrev([9,3,-1]),Polrev([1,1,0]),Polrev([91,-383,-316]),Polrev([7885,15090,6778])], K);
 
magma: E := EllipticCurve([K![-7,-1,1],K![9,3,-1],K![1,1,0],K![91,-383,-316],K![7885,15090,6778]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-10)\) = \((a+2)\cdot(2a^2-3a-19)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2560a^2-4096a-24064)\) = \((a+2)^{27}\cdot(2a^2-3a-19)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16777216000 \) = \(2^{27}\cdot5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{58374455049}{64000} a^{2} - \frac{216373317399}{64000} a - \frac{187800406911}{64000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{11}{3} a^{2} - \frac{4}{3} a - 11 : -\frac{5}{3} a^{2} - 17 a - 24 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 83.063438389301239741102128041884740346 \)
Tamagawa product: \( 27 \)  =  \(3^{3}\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 6.1911831561114404082256402428941817547 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(2\) \(27\) \(I_{27}\) Split multiplicative \(-1\) \(1\) \(27\) \(27\)
\((2a^2-3a-19)\) \(5\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 10.1-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.