Properties

Label 3.3.148.1-475.2-b1
Base field 3.3.148.1
Conductor norm \( 475 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-114167a^{2}-133585a+52608\right){x}+38795288a^{2}+45393843a-17877301\)
sage: E = EllipticCurve([K([-2,-1,1]),K([-1,-1,0]),K([-1,-1,1]),K([52608,-133585,-114167]),K([-17877301,45393843,38795288])])
 
gp: E = ellinit([Polrev([-2,-1,1]),Polrev([-1,-1,0]),Polrev([-1,-1,1]),Polrev([52608,-133585,-114167]),Polrev([-17877301,45393843,38795288])], K);
 
magma: E := EllipticCurve([K![-2,-1,1],K![-1,-1,0],K![-1,-1,1],K![52608,-133585,-114167],K![-17877301,45393843,38795288]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(63 a^{2} + 74 a - 29 : -470 a^{2} - 549 a + 217 : 1\right)$$0.068895405522012185358023478972610089830$$\infty$
$\left(\frac{297}{4} a^{2} + 87 a - \frac{137}{4} : -\frac{41}{2} a^{2} - 23 a + \frac{39}{4} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((2a^2-6a-5)\) = \((a^2-a-1)^{2}\cdot(-a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 475 \) = \(5^{2}\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-102a^2+183a+164$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-102a^2+183a+164)\) = \((a^2-a-1)^{6}\cdot(-a^2-a-1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -5640625 \) = \(-5^{6}\cdot19^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{309847904}{361} a^{2} + \frac{362105728}{361} a - \frac{142642480}{361} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.068895405522012185358023478972610089830 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.2066862165660365560740704369178302694900 \)
Global period: $\Omega(E/K)$ \( 125.00488008812749875839588957494874687 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.1237707036082050193055964689659613256 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 2.123770704 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 125.004880 \cdot 0.206686 \cdot 4 } { {2^2 \cdot 12.165525} } \approx 2.123770704$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^2-a-1)\) \(5\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((-a^2-a-1)\) \(19\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 475.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.