Properties

Label 3.3.148.1-400.2-e9
Base field 3.3.148.1
Conductor norm \( 400 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4622250a^{2}-5408432a+2129985\right){x}-9795739727a^{2}-11461862681a+4513985865\)
sage: E = EllipticCurve([K([1,1,0]),K([-1,-1,0]),K([-1,0,1]),K([2129985,-5408432,-4622250]),K([4513985865,-11461862681,-9795739727])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([-1,-1,0]),Polrev([-1,0,1]),Polrev([2129985,-5408432,-4622250]),Polrev([4513985865,-11461862681,-9795739727])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![-1,-1,0],K![-1,0,1],K![2129985,-5408432,-4622250],K![4513985865,-11461862681,-9795739727]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-466 a^{2} - 545 a + 215 : -4136 a^{2} - 4839 a + 1906 : 1\right)$$0.51830439435839291613945211278821783681$$\infty$
$\left(951 a^{2} + 1113 a - 438 : -1508 a^{2} - 1764 a + 695 : 1\right)$$0$$2$
$\left(-425 a^{2} - 497 a + 196 : 673 a^{2} + 788 a - 310 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((6a+2)\) = \((a^2-a-2)^{4}\cdot(a^2-a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 400 \) = \(2^{4}\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-144a^2+386a+578$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-144a^2+386a+578)\) = \((a^2-a-2)^{4}\cdot(a^2-a-1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 156250000 \) = \(2^{4}\cdot5^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{185785252}{625} a^{2} - \frac{445080936}{625} a + \frac{123160356}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.51830439435839291613945211278821783681 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.55491318307517874841835633836465351043 \)
Global period: $\Omega(E/K)$ \( 75.708945081528218256381891205377465262 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.4191482940032560927871431515565993774 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 2.419148294 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 75.708945 \cdot 1.554913 \cdot 4 } { {4^2 \cdot 12.165525} } \approx 2.419148294$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^2-a-2)\) \(2\) \(1\) \(II\) Additive \(1\) \(4\) \(4\) \(0\)
\((a^2-a-1)\) \(5\) \(4\) \(I_{4}^{*}\) Additive \(1\) \(2\) \(10\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 400.2-e consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.