Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
400.2-a1 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$40.66096072$ |
1.671155191 |
\( -2624 a^{2} + 1536 a + 9024 \) |
\( \bigl[a^{2} - 1\) , \( -a^{2} + 1\) , \( a + 1\) , \( 4455 a^{2} + 5213 a - 2052\) , \( -36675517 a^{2} - 42913527 a + 16900486\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(4455a^{2}+5213a-2052\right){x}-36675517a^{2}-42913527a+16900486$ |
400.2-a2 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$81.32192145$ |
1.671155191 |
\( 5088 a^{2} + 8224 a + 3904 \) |
\( \bigl[a^{2} - 1\) , \( -a^{2} + 2 a + 2\) , \( 0\) , \( 2 a^{2} - 3\) , \( 0\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(-a^{2}+2a+2\right){x}^{2}+\left(2a^{2}-3\right){x}$ |
400.2-a3 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$20.33048036$ |
1.671155191 |
\( -437389120487750 a^{2} + 301313945830146 a + 1405908485521968 \) |
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( 0\) , \( 42 a^{2} + 21 a - 63\) , \( 57 a^{2} + 130 a + 66\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(42a^{2}+21a-63\right){x}+57a^{2}+130a+66$ |
400.2-a4 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$81.32192145$ |
1.671155191 |
\( -10821604 a^{2} + 6316064 a + 37257972 \) |
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( 0\) , \( -8 a^{2} - 9 a + 2\) , \( 13 a^{2} + 16 a - 6\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-8a^{2}-9a+2\right){x}+13a^{2}+16a-6$ |
400.2-a5 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{8} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$20.33048036$ |
1.671155191 |
\( 2644415465286 a^{2} - 6561307231490 a + 1785326087072 \) |
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( 0\) , \( -118 a^{2} - 119 a + 47\) , \( 1199 a^{2} + 1448 a - 566\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-118a^{2}-119a+47\right){x}+1199a^{2}+1448a-566$ |
400.2-a6 |
400.2-a |
$6$ |
$8$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{4} \cdot 5^{6} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$40.66096072$ |
1.671155191 |
\( 297852964 a^{2} + 348495840 a - 137248100 \) |
\( \bigl[a + 1\) , \( -a^{2} + 2\) , \( a + 1\) , \( -61 a^{2} - 70 a + 29\) , \( -459 a^{2} - 537 a + 212\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-61a^{2}-70a+29\right){x}-459a^{2}-537a+212$ |
400.2-b1 |
400.2-b |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{12} \cdot 5^{9} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$36.68657131$ |
1.507808793 |
\( -194645795136 a^{2} + 134089931040 a + 625653842512 \) |
\( \bigl[a^{2} - 1\) , \( -a^{2} + 3\) , \( a^{2} - 1\) , \( -19 a^{2} - 16 a - 28\) , \( 53 a^{2} + 166 a - 6\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-19a^{2}-16a-28\right){x}+53a^{2}+166a-6$ |
400.2-b2 |
400.2-b |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{12} \cdot 5^{9} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$36.68657131$ |
1.507808793 |
\( 7028736 a^{2} - 17440800 a + 4747984 \) |
\( \bigl[a^{2} - 1\) , \( -a^{2} + 3\) , \( 0\) , \( 30521 a^{2} + 35718 a - 14063\) , \( -15069426 a^{2} - 17632534 a + 6944161\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(30521a^{2}+35718a-14063\right){x}-15069426a^{2}-17632534a+6944161$ |
400.2-b3 |
400.2-b |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 5^{9} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$36.68657131$ |
1.507808793 |
\( 491380736 a^{2} + 574509056 a - 227098624 \) |
\( \bigl[0\) , \( -a^{2} + 2 a + 3\) , \( 0\) , \( 14 a^{2} - 12 a - 50\) , \( -45 a^{2} + 62 a + 84\bigr] \) |
${y}^2={x}^{3}+\left(-a^{2}+2a+3\right){x}^{2}+\left(14a^{2}-12a-50\right){x}-45a^{2}+62a+84$ |
400.2-b4 |
400.2-b |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 5^{9} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$36.68657131$ |
1.507808793 |
\( 4096 a \) |
\( \bigl[0\) , \( -a^{2} + 2 a + 3\) , \( 0\) , \( -1890 a^{2} - 2208 a + 874\) , \( -75538 a^{2} - 88388 a + 34811\bigr] \) |
${y}^2={x}^{3}+\left(-a^{2}+2a+3\right){x}^{2}+\left(-1890a^{2}-2208a+874\right){x}-75538a^{2}-88388a+34811$ |
400.2-c1 |
400.2-c |
$1$ |
$1$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{11} \cdot 5^{10} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
|
|
$1$ |
\( 2 \) |
$1$ |
$9.604754279$ |
1.579011876 |
\( -39047 a^{2} + 95455 a - 25982 \) |
\( \bigl[a + 1\) , \( a^{2} - 2 a - 2\) , \( a^{2} - a - 2\) , \( -4 a^{2} + 8 a - 1\) , \( -10 a^{2} + 28 a - 13\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2a-2\right){x}^{2}+\left(-4a^{2}+8a-1\right){x}-10a^{2}+28a-13$ |
400.2-d1 |
400.2-d |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{27} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$2.853837331$ |
1.407503901 |
\( \frac{1194403353243}{8} a^{2} - \frac{1645630616923}{16} a - \frac{15356778159835}{32} \) |
\( \bigl[a^{2} - a - 2\) , \( -a^{2} + 2 a + 2\) , \( 0\) , \( 131 a^{2} - 110 a - 441\) , \( 1383 a^{2} - 940 a - 4311\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}={x}^{3}+\left(-a^{2}+2a+2\right){x}^{2}+\left(131a^{2}-110a-441\right){x}+1383a^{2}-940a-4311$ |
400.2-d2 |
400.2-d |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{17} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$8.561511994$ |
1.407503901 |
\( \frac{9269}{4} a^{2} - \frac{5217}{4} a - \frac{14045}{2} \) |
\( \bigl[a^{2} - a - 2\) , \( -a^{2} + 2 a + 2\) , \( 0\) , \( a^{2} - 1\) , \( 3 a^{2} - 11\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}={x}^{3}+\left(-a^{2}+2a+2\right){x}^{2}+\left(a^{2}-1\right){x}+3a^{2}-11$ |
400.2-d3 |
400.2-d |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{13} \cdot 5^{4} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$8.561511994$ |
1.407503901 |
\( -\frac{1107768943243}{2} a^{2} + 1374213611122 a - \frac{747838372025}{2} \) |
\( \bigl[a + 1\) , \( a^{2} - 2 a - 2\) , \( a^{2} - a - 2\) , \( -343232 a^{2} - 401611 a + 158168\) , \( 201545807 a^{2} + 235826025 a - 92874552\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2a-2\right){x}^{2}+\left(-343232a^{2}-401611a+158168\right){x}+201545807a^{2}+235826025a-92874552$ |
400.2-d4 |
400.2-d |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{4} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.2 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$2.853837331$ |
1.407503901 |
\( -510202915288585674393934 a^{2} - 596981536616381118045543 a + \frac{470214360978607237824565}{2} \) |
\( \bigl[a + 1\) , \( a^{2} - 2 a - 2\) , \( a^{2} - a - 2\) , \( -27801792 a^{2} - 32530501 a + 12811378\) , \( 146991753397 a^{2} + 171993064295 a - 67735435572\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2a-2\right){x}^{2}+\left(-27801792a^{2}-32530501a+12811378\right){x}+146991753397a^{2}+171993064295a-67735435572$ |
400.2-e1 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{3} \) |
$0.259152197$ |
$75.70894508$ |
2.419148294 |
\( -\frac{108768}{25} a^{2} + \frac{75424}{25} a + \frac{407296}{25} \) |
\( \bigl[a^{2} - 1\) , \( a^{2} - 2 a - 1\) , \( a^{2} - 1\) , \( -51231 a^{2} - 59948 a + 23609\) , \( 5934968 a^{2} + 6944424 a - 2734899\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(-51231a^{2}-59948a+23609\right){x}+5934968a^{2}+6944424a-2734899$ |
400.2-e2 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{12} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{3} \) |
$0.777456591$ |
$25.23631502$ |
2.419148294 |
\( \frac{7209817568672}{15625} a^{2} + \frac{8324376473504}{15625} a - \frac{3284389248384}{15625} \) |
\( \bigl[a^{2} - 1\) , \( a^{2} - 2 a - 1\) , \( a^{2} - 1\) , \( -3561151 a^{2} - 4166858 a + 1641019\) , \( 6735634702 a^{2} + 7881275142 a - 3103855419\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(-3561151a^{2}-4166858a+1641019\right){x}+6735634702a^{2}+7881275142a-3103855419$ |
400.2-e3 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{9} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2 \) |
$1.554913183$ |
$12.61815751$ |
2.419148294 |
\( \frac{3238786394956992}{125} a^{2} - \frac{8036058359040256}{125} a + \frac{2186604679552576}{125} \) |
\( \bigl[a^{2} - 1\) , \( -a + 1\) , \( a^{2} - a - 2\) , \( -39 a^{2} + 41 a - 11\) , \( -90 a^{2} + 410 a - 117\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-39a^{2}+41a-11\right){x}-90a^{2}+410a-117$ |
400.2-e4 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{7} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2 \) |
$0.518304394$ |
$37.85447254$ |
2.419148294 |
\( \frac{43712}{5} a^{2} - \frac{105216}{5} a + \frac{28736}{5} \) |
\( \bigl[a^{2} - 1\) , \( -a + 1\) , \( a^{2} - a - 2\) , \( a^{2} + a - 1\) , \( a^{2} + 2 a - 2\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a^{2}+a-1\right){x}+a^{2}+2a-2$ |
400.2-e5 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{4} \cdot 5^{7} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2 \) |
$0.518304394$ |
$37.85447254$ |
2.419148294 |
\( -\frac{385146932}{5} a^{2} + \frac{268247176}{5} a + \frac{1242320604}{5} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - a - 2\) , \( -8323587 a^{2} - 9739316 a + 3835603\) , \( 24073033070 a^{2} + 28167530687 a - 11093121505\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-8323587a^{2}-9739316a+3835603\right){x}+24073033070a^{2}+28167530687a-11093121505$ |
400.2-e6 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{4} \cdot 5^{9} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2 \) |
$1.554913183$ |
$12.61815751$ |
2.419148294 |
\( \frac{179143376765057962508}{125} a^{2} + \frac{209613244321350839256}{125} a - \frac{82551261375569819076}{125} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - a - 2\) , \( -674134712 a^{2} - 788795916 a + 310648778\) , \( 17552202654819 a^{2} + 20537595136925 a - 8088250290020\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-674134712a^{2}-788795916a+310648778\right){x}+17552202654819a^{2}+20537595136925a-8088250290020$ |
400.2-e7 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{8} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$0.259152197$ |
$37.85447254$ |
2.419148294 |
\( \frac{13838352792668}{25} a^{2} - \frac{34335804621874}{25} a + \frac{9343051795654}{25} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( 105815 a^{2} + 123813 a - 48760\) , \( -28888097400 a^{2} - 33801572392 a + 13311956725\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(105815a^{2}+123813a-48760\right){x}-28888097400a^{2}-33801572392a+13311956725$ |
400.2-e8 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{8} \cdot 5^{12} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$0.777456591$ |
$12.61815751$ |
2.419148294 |
\( -\frac{8271321267405818624506172}{15625} a^{2} + \frac{5698048560343235071057746}{15625} a + \frac{26586671253641020172342134}{15625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( -952345 a^{2} - 1114327 a + 438850\) , \( 779979186568 a^{2} + 912643106054 a - 359423088145\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-952345a^{2}-1114327a+438850\right){x}+779979186568a^{2}+912643106054a-359423088145$ |
400.2-e9 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{10} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{2} \) |
$0.518304394$ |
$75.70894508$ |
2.419148294 |
\( \frac{185785252}{625} a^{2} - \frac{445080936}{625} a + \frac{123160356}{625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( -4622250 a^{2} - 5408432 a + 2129985\) , \( -9795739727 a^{2} - 11461862681 a + 4513985865\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4622250a^{2}-5408432a+2129985\right){x}-9795739727a^{2}-11461862681a+4513985865$ |
400.2-e10 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{18} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{2} \) |
$1.554913183$ |
$25.23631502$ |
2.419148294 |
\( -\frac{3077332109418143868}{244140625} a^{2} + \frac{2119953522630977224}{244140625} a + \frac{9891535601060896996}{244140625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( -42314515 a^{2} - 49511642 a + 19499000\) , \( 271783667397 a^{2} + 318010396507 a - 125240938125\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-42314515a^{2}-49511642a+19499000\right){x}+271783667397a^{2}+318010396507a-125240938125$ |
400.2-e11 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{14} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1.036608788$ |
$9.463618135$ |
2.419148294 |
\( \frac{148445904580292}{390625} a^{2} + \frac{173694846086594}{390625} a - \frac{68405381268774}{390625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( -73608095 a^{2} - 86127837 a + 33919430\) , \( -633264406060 a^{2} - 740974123992 a + 291815284765\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-73608095a^{2}-86127837a+33919430\right){x}-633264406060a^{2}-740974123992a+291815284765$ |
400.2-e12 |
400.2-e |
$12$ |
$24$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{30} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$3.109826366$ |
$3.154539378$ |
2.419148294 |
\( \frac{3678043576600698623452}{59604644775390625} a^{2} - \frac{2506193844958703814786}{59604644775390625} a - \frac{11746914365786968746294}{59604644775390625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a^{2} - 1\) , \( -86574145 a^{2} - 101299237 a + 39894330\) , \( -394902257472 a^{2} - 462069795006 a + 181975354395\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-86574145a^{2}-101299237a+39894330\right){x}-394902257472a^{2}-462069795006a+181975354395$ |
400.2-f1 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{10} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$68.86225078$ |
1.415110536 |
\( \frac{33540448}{625} a^{2} - \frac{84221664}{625} a + \frac{25911744}{625} \) |
\( \bigl[a^{2} - 1\) , \( -a^{2} + 2\) , \( 0\) , \( -6766 a^{2} - 7916 a + 3119\) , \( 62920 a^{2} + 73622 a - 28994\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-6766a^{2}-7916a+3119\right){x}+62920a^{2}+73622a-28994$ |
400.2-f2 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$34.43112539$ |
1.415110536 |
\( -\frac{116137024}{25} a^{2} + \frac{80018432}{25} a + \frac{373316928}{25} \) |
\( \bigl[a^{2} - 1\) , \( -a^{2} + 2 a + 2\) , \( a^{2} - a - 2\) , \( 5 a^{2} - a - 13\) , \( 12 a^{2} - 8 a - 33\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-a^{2}+2a+2\right){x}^{2}+\left(5a^{2}-a-13\right){x}+12a^{2}-8a-33$ |
400.2-f3 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{4} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$34.43112539$ |
1.415110536 |
\( \frac{489744179924}{25} a^{2} - \frac{1215147827632}{25} a + \frac{330640605772}{25} \) |
\( \bigl[a + 1\) , \( 0\) , \( a^{2} - a - 2\) , \( -825778 a^{2} - 966231 a + 380529\) , \( -749877255 a^{2} - 877421243 a + 345551782\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-825778a^{2}-966231a+380529\right){x}-749877255a^{2}-877421243a+345551782$ |
400.2-f4 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{8} \cdot 5^{22} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$8.607781348$ |
1.415110536 |
\( \frac{33415853404222}{152587890625} a^{2} - \frac{101678642545146}{152587890625} a + \frac{38593677679516}{152587890625} \) |
\( \bigl[a + 1\) , \( 0\) , \( a^{2} - 1\) , \( -593411 a^{2} - 694342 a + 273451\) , \( 1565973689 a^{2} + 1832324652 a - 721618101\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-593411a^{2}-694342a+273451\right){x}+1565973689a^{2}+1832324652a-721618101$ |
400.2-f5 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{14} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$68.86225078$ |
1.415110536 |
\( \frac{22828850892}{390625} a^{2} + \frac{29525514544}{390625} a - \frac{5674045724}{390625} \) |
\( \bigl[a + 1\) , \( 0\) , \( a^{2} - 1\) , \( -932856 a^{2} - 1091522 a + 429871\) , \( 900881416 a^{2} + 1054109171 a - 415136181\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-932856a^{2}-1091522a+429871\right){x}+900881416a^{2}+1054109171a-415136181$ |
400.2-f6 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{10} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$8.607781348$ |
1.415110536 |
\( -\frac{279119022425625657}{25} a^{2} + \frac{192282548644060726}{25} a + \frac{897178574222050829}{25} \) |
\( \bigl[a + 1\) , \( 0\) , \( a^{2} - 1\) , \( -14908796 a^{2} - 17444582 a + 6870136\) , \( 57831283579 a^{2} + 67667603422 a - 26649298971\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-14908796a^{2}-17444582a+6870136\right){x}+57831283579a^{2}+67667603422a-26649298971$ |
400.2-f7 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{10} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$34.43112539$ |
1.415110536 |
\( \frac{16515512320802}{625} a^{2} + \frac{19391754237914}{625} a - \frac{7510885919244}{625} \) |
\( \bigl[a + 1\) , \( 0\) , \( a^{2} - 1\) , \( -14917241 a^{2} - 17454462 a + 6874031\) , \( 57762601661 a^{2} + 67587239636 a - 26617649581\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-14917241a^{2}-17454462a+6874031\right){x}+57762601661a^{2}+67587239636a-26617649581$ |
400.2-f8 |
400.2-f |
$8$ |
$16$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{10} \cdot 5^{8} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$8.607781348$ |
1.415110536 |
\( \frac{119009940567734157414457}{25} a^{2} + \frac{139251923232473141180874}{25} a - \frac{54841104859726672189629}{25} \) |
\( \bigl[a + 1\) , \( 0\) , \( a^{2} - 1\) , \( -238675846 a^{2} - 279271382 a + 109984486\) , \( 3697406156843 a^{2} + 4326284979690 a - 1703805898811\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(-238675846a^{2}-279271382a+109984486\right){x}+3697406156843a^{2}+4326284979690a-1703805898811$ |
400.2-g1 |
400.2-g |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{12} \cdot 5^{3} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$33.74301905$ |
1.386829540 |
\( -194645795136 a^{2} + 134089931040 a + 625653842512 \) |
\( \bigl[a^{2} - 1\) , \( -1\) , \( a^{2} - 1\) , \( -45 a^{2} - 46 a + 16\) , \( 254 a^{2} + 284 a - 114\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}-{x}^{2}+\left(-45a^{2}-46a+16\right){x}+254a^{2}+284a-114$ |
400.2-g2 |
400.2-g |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{12} \cdot 5^{3} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$33.74301905$ |
1.386829540 |
\( 7028736 a^{2} - 17440800 a + 4747984 \) |
\( \bigl[a^{2} - 1\) , \( -1\) , \( 0\) , \( 60673 a^{2} + 70994 a - 27959\) , \( -42233017 a^{2} - 49416282 a + 19461444\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}-{x}^{2}+\left(60673a^{2}+70994a-27959\right){x}-42233017a^{2}-49416282a+19461444$ |
400.2-g3 |
400.2-g |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 5^{3} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$33.74301905$ |
1.386829540 |
\( 491380736 a^{2} + 574509056 a - 227098624 \) |
\( \bigl[0\) , \( a^{2} - 1\) , \( 0\) , \( -2 a^{2} - 4 a - 2\) , \( 6 a^{2} - 4 a - 1\bigr] \) |
${y}^2={x}^{3}+\left(a^{2}-1\right){x}^{2}+\left(-2a^{2}-4a-2\right){x}+6a^{2}-4a-1$ |
400.2-g4 |
400.2-g |
$4$ |
$10$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 5^{3} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$33.74301905$ |
1.386829540 |
\( 4096 a \) |
\( \bigl[0\) , \( a^{2} - 1\) , \( 0\) , \( -3754 a^{2} - 4392 a + 1730\) , \( -211701 a^{2} - 247708 a + 97554\bigr] \) |
${y}^2={x}^{3}+\left(a^{2}-1\right){x}^{2}+\left(-3754a^{2}-4392a+1730\right){x}-211701a^{2}-247708a+97554$ |
400.2-h1 |
400.2-h |
$1$ |
$1$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{11} \cdot 5^{4} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
✓ |
|
|
$1$ |
\( 2^{2} \cdot 3 \) |
$0.004862610$ |
$167.6522354$ |
2.412406532 |
\( -39047 a^{2} + 95455 a - 25982 \) |
\( \bigl[a^{2} - a - 2\) , \( a - 1\) , \( a + 1\) , \( -2 a^{2} + 2 a + 1\) , \( 2 a^{2} - 5 a + 1\bigr] \) |
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a^{2}+2a+1\right){x}+2a^{2}-5a+1$ |
400.2-i1 |
400.2-i |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{13} \cdot 5^{10} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.2 |
$1$ |
\( 2^{2} \) |
$0.120274033$ |
$20.14349906$ |
2.389775890 |
\( -\frac{1107768943243}{2} a^{2} + 1374213611122 a - \frac{747838372025}{2} \) |
\( \bigl[a + 1\) , \( a^{2} - a - 1\) , \( a^{2} - 1\) , \( -3829352 a^{2} - 4480664 a + 1764606\) , \( 7509290462 a^{2} + 8786519286 a - 3460364600\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-a-1\right){x}^{2}+\left(-3829352a^{2}-4480664a+1764606\right){x}+7509290462a^{2}+8786519286a-3460364600$ |
400.2-i2 |
400.2-i |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{10} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.2 |
$1$ |
\( 2^{2} \) |
$0.360822099$ |
$6.714499686$ |
2.389775890 |
\( -510202915288585674393934 a^{2} - 596981536616381118045543 a + \frac{470214360978607237824565}{2} \) |
\( \bigl[a + 1\) , \( a^{2} - a - 1\) , \( a^{2} - 1\) , \( -310177792 a^{2} - 362934834 a + 142933376\) , \( 5477605693572 a^{2} + 6409272401106 a - 2524141653950\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-a-1\right){x}^{2}+\left(-310177792a^{2}-362934834a+142933376\right){x}+5477605693572a^{2}+6409272401106a-2524141653950$ |
400.2-i3 |
400.2-i |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{27} \cdot 5^{2} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.1 |
$1$ |
\( 2^{2} \) |
$0.072164419$ |
$33.57249843$ |
2.389775890 |
\( \frac{1194403353243}{8} a^{2} - \frac{1645630616923}{16} a - \frac{15356778159835}{32} \) |
\( \bigl[a + 1\) , \( a\) , \( a^{2} - 1\) , \( -9 a^{2} - 29 a - 20\) , \( 32 a^{2} + 82 a + 29\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+a{x}^{2}+\left(-9a^{2}-29a-20\right){x}+32a^{2}+82a+29$ |
400.2-i4 |
400.2-i |
$4$ |
$15$ |
3.3.148.1 |
$3$ |
$[3, 0]$ |
400.2 |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{17} \cdot 5^{2} \) |
$2.95084$ |
$(a^2-a-2), (a^2-a-1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B.4.1 |
$1$ |
\( 2^{2} \) |
$0.024054806$ |
$100.7174953$ |
2.389775890 |
\( \frac{9269}{4} a^{2} - \frac{5217}{4} a - \frac{14045}{2} \) |
\( \bigl[a + 1\) , \( a\) , \( a^{2} - 1\) , \( a^{2} + a\) , \( 2 a^{2} + 2 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+a{x}^{2}+\left(a^{2}+a\right){x}+2a^{2}+2a-1$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.