Properties

Label 3.3.148.1-361.2-d1
Base field 3.3.148.1
Conductor norm \( 361 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-a-1\right){x}^{2}-a{x}-2a^{2}+3a-1\)
sage: E = EllipticCurve([K([-1,-1,1]),K([-1,-1,1]),K([-1,0,1]),K([0,-1,0]),K([-1,3,-2])])
 
gp: E = ellinit([Polrev([-1,-1,1]),Polrev([-1,-1,1]),Polrev([-1,0,1]),Polrev([0,-1,0]),Polrev([-1,3,-2])], K);
 
magma: E := EllipticCurve([K![-1,-1,1],K![-1,-1,1],K![-1,0,1],K![0,-1,0],K![-1,3,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-a + 1 : -a + 1 : 1\right)$$0.31327820676560292335233263853827548995$$\infty$

Invariants

Conductor: $\frak{N}$ = \((5a^2-4a-10)\) = \((-a^2-a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 361 \) = \(19^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-14a^2+43a+24$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-14a^2+43a+24)\) = \((-a^2-a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 130321 \) = \(19^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( 729 a^{2} + 985 a - 377 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.31327820676560292335233263853827548995 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.939834620296808770056997915614826469850 \)
Global period: $\Omega(E/K)$ \( 34.126539739046830707489204720826806552 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.6364093089228797542799597806283639950 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 2.636409309 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 34.126540 \cdot 0.939835 \cdot 1 } { {1^2 \cdot 12.165525} } \approx 2.636409309$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a^2-a-1)\) \(19\) \(1\) \(IV\) Additive \(1\) \(2\) \(4\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 361.2-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.