Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
338.2-a1 338.2-a 3.3.148.1 \( 2 \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.532574040$ 0.745150582 \( -\frac{37509}{16} a^{2} - \frac{92921}{32} a - \frac{4099}{8} \) \( \bigl[a\) , \( -1\) , \( a^{2} - a - 2\) , \( -22 a^{2} + 47 a - 13\) , \( 135 a^{2} - 346 a + 93\bigr] \) ${y}^2+a{x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}-{x}^{2}+\left(-22a^{2}+47a-13\right){x}+135a^{2}-346a+93$
338.2-b1 338.2-b 3.3.148.1 \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.026007038$ $128.9443639$ 1.653916823 \( \frac{2177}{2} a^{2} - \frac{1353}{2} a - 2323 \) \( \bigl[a^{2} - a - 1\) , \( a^{2} - a - 3\) , \( a^{2} - a - 2\) , \( 0\) , \( 0\bigr] \) ${y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}$
338.2-c1 338.2-c 3.3.148.1 \( 2 \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $16.95622935$ 2.787586934 \( \frac{47519}{26} a^{2} - \frac{15283}{13} a - \frac{161671}{26} \) \( \bigl[a^{2} - a - 1\) , \( -a^{2} + 2\) , \( a^{2} - a - 1\) , \( -3\) , \( 3 a^{2} + a - 7\bigr] \) ${y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}-3{x}+3a^{2}+a-7$
338.2-c2 338.2-c 3.3.148.1 \( 2 \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.652076451$ 2.787586934 \( -\frac{936828579535}{4394} a^{2} + \frac{1669497916531}{4394} a - \frac{428712816945}{4394} \) \( \bigl[a^{2} - a - 1\) , \( -a^{2} + 2\) , \( a^{2} - a - 1\) , \( -75 a^{2} - 55 a + 52\) , \( 512 a^{2} + 659 a - 222\bigr] \) ${y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-75a^{2}-55a+52\right){x}+512a^{2}+659a-222$
338.2-d1 338.2-d 3.3.148.1 \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.269775332$ $6.229134716$ 1.657602329 \( \frac{2930762217049733062408935}{125497034} a^{2} - \frac{1009489594983775464711535}{62748517} a - \frac{9420406871887862637780499}{125497034} \) \( \bigl[1\) , \( a^{2} - a - 3\) , \( 0\) , \( -24323343 a^{2} - 28460417 a + 11208468\) , \( 120295763573 a^{2} + 140756447359 a - 55433626406\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(-24323343a^{2}-28460417a+11208468\right){x}+120295763573a^{2}+140756447359a-55433626406$
338.2-d2 338.2-d 3.3.148.1 \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.038539333$ $43.60394301$ 1.657602329 \( -\frac{192290305}{104} a^{2} + \frac{119296865}{26} a - \frac{129845369}{104} \) \( \bigl[1\) , \( a\) , \( a^{2} - a - 2\) , \( 10 a - 2\) , \( 5 a^{2} - 12 a + 3\bigr] \) ${y}^2+{x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+a{x}^{2}+\left(10a-2\right){x}+5a^{2}-12a+3$
338.2-e1 338.2-e 3.3.148.1 \( 2 \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $12.23084556$ 2.010738625 \( \frac{2177}{2} a^{2} - \frac{1353}{2} a - 2323 \) \( \bigl[a^{2} - 2\) , \( -a^{2} + a + 1\) , \( a^{2} - 2\) , \( 3 a^{2} - 4 a - 8\) , \( 5 a^{2} - 3 a - 19\bigr] \) ${y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}+\left(3a^{2}-4a-8\right){x}+5a^{2}-3a-19$
338.2-f1 338.2-f 3.3.148.1 \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.003045380$ $126.0336304$ 2.839485405 \( -\frac{37509}{16} a^{2} - \frac{92921}{32} a - \frac{4099}{8} \) \( \bigl[a^{2} - 2\) , \( a^{2} - 2 a - 2\) , \( 1\) , \( -3 a^{2} + 3 a + 1\) , \( 3 a^{2} - 5 a + 1\bigr] \) ${y}^2+\left(a^{2}-2\right){x}{y}+{y}={x}^{3}+\left(a^{2}-2a-2\right){x}^{2}+\left(-3a^{2}+3a+1\right){x}+3a^{2}-5a+1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.