Properties

Base field 3.3.148.1
Label 3.3.148.1-25.2-b4
Conductor \((25,-2 a^{2} + 3)\)
Conductor norm \( 25 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 3*x + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 - 3*a + 1);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a^{2} - 2\right) y = x^{3} + \left(a^{2} - 2 a - 1\right) x^{2} + \left(-5312850765 a^{2} - 6216494888 a + 2448220752\right) x - 394174470602711 a^{2} - 461218221425205 a + 181639982107606 \)
magma: E := ChangeRing(EllipticCurve([a + 1, a^2 - 2*a - 1, a^2 - 2, -5312850765*a^2 - 6216494888*a + 2448220752, -394174470602711*a^2 - 461218221425205*a + 181639982107606]),K);
 
sage: E = EllipticCurve(K, [a + 1, a^2 - 2*a - 1, a^2 - 2, -5312850765*a^2 - 6216494888*a + 2448220752, -394174470602711*a^2 - 461218221425205*a + 181639982107606])
 
gp (2.8): E = ellinit([a + 1, a^2 - 2*a - 1, a^2 - 2, -5312850765*a^2 - 6216494888*a + 2448220752, -394174470602711*a^2 - 461218221425205*a + 181639982107606],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((25,-2 a^{2} + 3)\) = \( \left(a^{2} - a - 1\right)^{2} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 25 \) = \( 5^{2} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((125,a + 92,a^{2} - a + 69)\) = \( \left(a^{2} - a - 1\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 125 \) = \( 5^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -194645795136 a^{2} + 134089931040 a + 625653842512 \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(\frac{129435}{4} a^{2} + \frac{75727}{2} a - \frac{59645}{4} : -51291 a^{2} - \frac{240057}{4} a + 23636 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - a - 1\right) \) \(5\) \(2\) \(III\) Additive \(-1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 25.2-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.