Properties

Base field 3.3.148.1
Label 3.3.148.1-20.1-a9
Conductor \((10,-a^{2} + 2 a + 3)\)
Conductor norm \( 20 \)
CM no
base-change no
Q-curve no
Torsion order \( 12 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 3*x + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 - 3*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{2} - 1\right) x y = x^{3} + \left(a^{2} - 3\right) x^{2} + \left(-625 a^{2} - 730 a + 290\right) x - 9146 a^{2} - 10702 a + 4214 \)
magma: E := ChangeRing(EllipticCurve([a^2 - 1, a^2 - 3, 0, -625*a^2 - 730*a + 290, -9146*a^2 - 10702*a + 4214]),K);
 
sage: E = EllipticCurve(K, [a^2 - 1, a^2 - 3, 0, -625*a^2 - 730*a + 290, -9146*a^2 - 10702*a + 4214])
 
gp (2.8): E = ellinit([a^2 - 1, a^2 - 3, 0, -625*a^2 - 730*a + 290, -9146*a^2 - 10702*a + 4214],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((10,-a^{2} + 2 a + 3)\) = \( \left(a^{2} - a - 2\right)^{2} \cdot \left(a^{2} - a - 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 20 \) = \( 2^{2} \cdot 5 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((200,8 a + 136,4 a^{2} + 44)\) = \( \left(a^{2} - a - 2\right)^{8} \cdot \left(a^{2} - a - 1\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 6400 \) = \( 2^{8} \cdot 5^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{108768}{25} a^{2} + \frac{75424}{25} a + \frac{407296}{25} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\times\Z/6\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generators: $\left(56 a^{2} + 66 a - 25 : -1195 a^{2} - 1398 a + 551 : 1\right)$,$\left(-\frac{5}{2} a^{2} - \frac{5}{2} a + 2 : 4 a^{2} + 5 a - \frac{3}{2} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - a - 2\right) \) \(2\) \(3\) \(IV^*\) Additive \(-1\) \(2\) \(8\) \(0\)
\( \left(a^{2} - a - 1\right) \) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 20.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.