Properties

Label 3.3.148.1-19.1-b4
Base field 3.3.148.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(-a^{2}+2a+3\right){x}^{2}+\left(-14413186731445a^{2}-16864675023680a+6641756824108\right){x}-63968762883395881049a^{2}-74848985016046516967a+29477517729190614798\)
sage: E = EllipticCurve([K([0,0,0]),K([3,2,-1]),K([1,0,0]),K([6641756824108,-16864675023680,-14413186731445]),K([29477517729190614798,-74848985016046516967,-63968762883395881049])])
 
gp: E = ellinit([Polrev([0,0,0]),Polrev([3,2,-1]),Polrev([1,0,0]),Polrev([6641756824108,-16864675023680,-14413186731445]),Polrev([29477517729190614798,-74848985016046516967,-63968762883395881049])], K);
 
magma: E := EllipticCurve([K![0,0,0],K![3,2,-1],K![1,0,0],K![6641756824108,-16864675023680,-14413186731445],K![29477517729190614798,-74848985016046516967,-63968762883395881049]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{335019313}{100} a^{2} + \frac{196000733}{50} a - \frac{154380711}{100} : \frac{1756760114348}{125} a^{2} + \frac{8222245080169}{500} a - \frac{809534608556}{125} : 1\right)$$2.5296817027407494987153185079524223795$$\infty$
$\left(\frac{3425799}{2} a^{2} + \frac{4008479}{2} a - 789324 : -\frac{1}{2} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-a^2-a-1)\) = \((-a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $9a^2-35a-153$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((9a^2-35a-153)\) = \((-a^2-a-1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -2476099 \) = \(-19^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{21475865428001583104}{2476099} a^{2} - \frac{53285799291084800000}{2476099} a + \frac{14499029076062806016}{2476099} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 2.5296817027407494987153185079524223795 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 7.5890451082222484961459555238572671385 \)
Global period: $\Omega(E/K)$ \( 2.9070332569522215915220296236975880883 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.45336322123837360534242574207699263494 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 0.453363221 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 2.907033 \cdot 7.589045 \cdot 1 } { {2^2 \cdot 12.165525} } \approx 0.453363221$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a^2-a-1)\) \(19\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 19.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.