Properties

Label 3.3.148.1-19.1-b2
Base field 3.3.148.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 10 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}-{x}-a^{2}+3\)
sage: E = EllipticCurve([K([-2,-1,1]),K([2,1,-1]),K([-2,0,1]),K([-1,0,0]),K([3,0,-1])])
 
gp: E = ellinit([Polrev([-2,-1,1]),Polrev([2,1,-1]),Polrev([-2,0,1]),Polrev([-1,0,0]),Polrev([3,0,-1])], K);
 
magma: E := EllipticCurve([K![-2,-1,1],K![2,1,-1],K![-2,0,1],K![-1,0,0],K![3,0,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2-a-1)\) = \((-a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^2-4a-10)\) = \((-a^2-a-1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -361 \) = \(-19^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{19422176}{361} a^{2} - \frac{29688224}{361} a + \frac{7279536}{361} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} - 3 : a^{2} - 2 a - 4 : 1\right)$
Height \(0.25296817027407494987153185079524223795\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{2} - 2 a : -2 a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.25296817027407494987153185079524223795 \)
Period: \( 363.37915711902769894025370296219851104 \)
Tamagawa product: \( 2 \)
Torsion order: \(10\)
Leading coefficient: \( 0.45336322123837360534242574207699263494 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a-1)\) \(19\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 19.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.