Properties

Label 3.3.1101.1-6.1-a2
Base field 3.3.1101.1
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1101.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 12 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([12, -9, -1, 1]))
 
gp: K = nfinit(Polrev([12, -9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12, -9, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{2}+a-7\right){y}={x}^{3}+\left(a^{2}-8\right){x}^{2}+\left(-5a^{2}+52a-105\right){x}-186a^{2}+572a-196\)
sage: E = EllipticCurve([K([1,0,0]),K([-8,0,1]),K([-7,1,1]),K([-105,52,-5]),K([-196,572,-186])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-8,0,1]),Polrev([-7,1,1]),Polrev([-105,52,-5]),Polrev([-196,572,-186])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-8,0,1],K![-7,1,1],K![-105,52,-5],K![-196,572,-186]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-6)\) = \((a-2)\cdot(-a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2)\) = \((a-2)^{4}\cdot(-a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -144 \) = \(-2^{4}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{12427210626707}{48} a^{2} - \frac{1787973677179}{16} a + \frac{104165760846863}{48} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 a + 11 : -2 a^{2} + 10 a - 14 : 1\right)$
Height \(0.16278434353833096853762414047210668965\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a^{2} - \frac{15}{4} a + 12 : -\frac{3}{8} a^{2} + \frac{11}{8} a - \frac{5}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.16278434353833096853762414047210668965 \)
Period: \( 86.934796502385358055753495267900932262 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.2794810839016234008508778199761358307 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-2)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-a+3)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 6.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.