Properties

Base field 3.1.23.1
Label 3.1.23.1-89.1-A4
Conductor \((89,a^{2} + 4)\)
Conductor norm \( 89 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 + 1);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a^{2} + a\right) y = x^{3} + \left(-a^{2} - a - 1\right) x^{2} + \left(-31 a^{2} + 80 a - 50\right) x - 115 a^{2} + 276 a - 245 \)
magma: E := ChangeRing(EllipticCurve([a + 1, -a^2 - a - 1, a^2 + a, -31*a^2 + 80*a - 50, -115*a^2 + 276*a - 245]),K);
 
sage: E = EllipticCurve(K, [a + 1, -a^2 - a - 1, a^2 + a, -31*a^2 + 80*a - 50, -115*a^2 + 276*a - 245])
 
gp (2.8): E = ellinit([a + 1, -a^2 - a - 1, a^2 + a, -31*a^2 + 80*a - 50, -115*a^2 + 276*a - 245],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((89,a^{2} + 4)\) = \( \left(-a^{2} - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 89 \) = \( 89 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((31181719929966183601,a + 22152389707867548821,a^{2} - a + 30687257986892780642)\) = \( \left(-a^{2} - 4\right)^{10} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 31181719929966183601 \) = \( 89^{10} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{743348644076538917997765}{31181719929966183601} a^{2} - \frac{1319483559157003453097049}{31181719929966183601} a + \frac{1008804885134049329340601}{31181719929966183601} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(\frac{3}{4} a^{2} - \frac{11}{2} a + \frac{35}{4} : \frac{3}{2} a^{2} - \frac{17}{8} a - 4 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{2} - 4\right) \) \(89\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 89.1-A consists of curves linked by isogenies of degrees dividing 10.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.