Base field 3.1.23.1
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
gp (2.8): K = nfinit(a^3 - a^2 + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([0, -a + 1, a, -1768*a^2 + 3086*a - 2357, -52408*a^2 + 92024*a - 69423]),K);
sage: E = EllipticCurve(K, [0, -a + 1, a, -1768*a^2 + 3086*a - 2357, -52408*a^2 + 92024*a - 69423])
gp (2.8): E = ellinit([0, -a + 1, a, -1768*a^2 + 3086*a - 2357, -52408*a^2 + 92024*a - 69423],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((259,-4 a^{2} + 7 a + 1)\) | = | \( \left(2 a^{2} - a\right) \cdot \left(3 a^{2} - a + 1\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 259 \) | = | \( 7 \cdot 37 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((44576876749711411,a + 2060529160802465,a^{2} - a + 32821527983827571)\) | = | \( \left(2 a^{2} - a\right)^{3} \cdot \left(3 a^{2} - a + 1\right)^{9} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 44576876749711411 \) | = | \( 7^{3} \cdot 37^{9} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{578622056111156353812664320}{44576876749711411} a^{2} + \frac{1015410575032007747136962560}{44576876749711411} a - \frac{766510266683364441673433088}{44576876749711411} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank: \( 0 \)magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: 1
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/3\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(40 a^{2} - 68 a + 56 : 357 a^{2} - 631 a + 471 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(2 a^{2} - a\right) \) | \(7\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
| \( \left(3 a^{2} - a + 1\right) \) | \(37\) | \(9\) | \(I_{9}\) | Split multiplicative | \(-1\) | \(1\) | \(9\) | \(9\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(3\) | 3Cs.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 9 and 27.
Its isogeny class
259.1-A
consists of curves linked by isogenies of
degrees dividing 27.