Properties

Base field 3.1.23.1
Label 3.1.23.1-259.1-A3
Conductor \((259,-4 a^{2} + 7 a + 1)\)
Conductor norm \( 259 \)
CM no
base-change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 + 1);
 

Weierstrass equation

\( y^2 + a y = x^{3} + \left(-a + 1\right) x^{2} + \left(-1768 a^{2} + 3086 a - 2357\right) x - 52408 a^{2} + 92024 a - 69423 \)
magma: E := ChangeRing(EllipticCurve([0, -a + 1, a, -1768*a^2 + 3086*a - 2357, -52408*a^2 + 92024*a - 69423]),K);
 
sage: E = EllipticCurve(K, [0, -a + 1, a, -1768*a^2 + 3086*a - 2357, -52408*a^2 + 92024*a - 69423])
 
gp (2.8): E = ellinit([0, -a + 1, a, -1768*a^2 + 3086*a - 2357, -52408*a^2 + 92024*a - 69423],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((259,-4 a^{2} + 7 a + 1)\) = \( \left(2 a^{2} - a\right) \cdot \left(3 a^{2} - a + 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 259 \) = \( 7 \cdot 37 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((44576876749711411,a + 2060529160802465,a^{2} - a + 32821527983827571)\) = \( \left(2 a^{2} - a\right)^{3} \cdot \left(3 a^{2} - a + 1\right)^{9} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 44576876749711411 \) = \( 7^{3} \cdot 37^{9} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{578622056111156353812664320}{44576876749711411} a^{2} + \frac{1015410575032007747136962560}{44576876749711411} a - \frac{766510266683364441673433088}{44576876749711411} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/3\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(40 a^{2} - 68 a + 56 : 357 a^{2} - 631 a + 471 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 a^{2} - a\right) \) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\( \left(3 a^{2} - a + 1\right) \) \(37\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 9 and 27.
Its isogeny class 259.1-A consists of curves linked by isogenies of degrees dividing 27.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.