Properties

Base field 3.1.23.1
Label 3.1.23.1-253.1-A5
Conductor \((253,2 a^{2} - 7 a)\)
Conductor norm \( 253 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 + 1);
 

Weierstrass equation

\( y^2 + \left(a^{2} + 1\right) x y = x^{3} + \left(a - 1\right) x^{2} + \left(-449 a^{2} + 838 a - 639\right) x - 6934 a^{2} + 12248 a - 9210 \)
magma: E := ChangeRing(EllipticCurve([a^2 + 1, a - 1, 0, -449*a^2 + 838*a - 639, -6934*a^2 + 12248*a - 9210]),K);
 
sage: E = EllipticCurve(K, [a^2 + 1, a - 1, 0, -449*a^2 + 838*a - 639, -6934*a^2 + 12248*a - 9210])
 
gp (2.8): E = ellinit([a^2 + 1, a - 1, 0, -449*a^2 + 838*a - 639, -6934*a^2 + 12248*a - 9210],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((253,2 a^{2} - 7 a)\) = \( \left(a^{2} + a - 2\right) \cdot \left(-a^{2} - 2 a + 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 253 \) = \( 11 \cdot 23 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((1146551135499121,a + 487247944869930,a^{2} - a + 431803671072449)\) = \( \left(a^{2} + a - 2\right)^{4} \cdot \left(-a^{2} - 2 a + 2\right)^{8} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 1146551135499121 \) = \( 11^{4} \cdot 23^{8} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{833654495257217661469537}{1146551135499121} a^{2} - \frac{1463012109643929405934449}{1146551135499121} a + \frac{1104329696417202846546921}{1146551135499121} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{19}{4} a^{2} + \frac{45}{4} a - 11 : \frac{37}{8} a^{2} - 8 a + \frac{35}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} + a - 2\right) \) \(11\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\( \left(-a^{2} - 2 a + 2\right) \) \(23\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 253.1-A consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.