Properties

Base field 3.1.23.1
Label 3.1.23.1-185.1-A8
Conductor \((185,-6 a^{2} + 4 a + 1)\)
Conductor norm \( 185 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 + 1);
 

Weierstrass equation

\( y^2 + \left(a^{2} + a\right) x y + \left(a^{2} + a\right) y = x^{3} - a^{2} x^{2} + \left(-142 a^{2} + 291 a - 179\right) x - 1459 a^{2} + 2242 a - 1431 \)
magma: E := ChangeRing(EllipticCurve([a^2 + a, -a^2, a^2 + a, -142*a^2 + 291*a - 179, -1459*a^2 + 2242*a - 1431]),K);
 
sage: E = EllipticCurve(K, [a^2 + a, -a^2, a^2 + a, -142*a^2 + 291*a - 179, -1459*a^2 + 2242*a - 1431])
 
gp (2.8): E = ellinit([a^2 + a, -a^2, a^2 + a, -142*a^2 + 291*a - 179, -1459*a^2 + 2242*a - 1431],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((185,-6 a^{2} + 4 a + 1)\) = \( \left(a^{2} + 1\right) \cdot \left(3 a^{2} - a + 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 185 \) = \( 5 \cdot 37 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((4114345003650022050625,a + 1913962768320897444858,a^{2} - a + 1627760205240231696853)\) = \( \left(a^{2} + 1\right)^{4} \cdot \left(3 a^{2} - a + 1\right)^{12} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 4114345003650022050625 \) = \( 5^{4} \cdot 37^{12} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{4643971392557468963566571623}{4114345003650022050625} a^{2} + \frac{8148410084872811532229913657}{4114345003650022050625} a - \frac{6152898026705077651587034456}{4114345003650022050625} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/4\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(18 a^{2} - 32 a + 29 : 153 a^{2} - 273 a + 180 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} + 1\right) \) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\( \left(3 a^{2} - a + 1\right) \) \(37\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 185.1-A consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.