Properties

Base field 3.1.23.1
Label 3.1.23.1-185.1-A3
Conductor \((185,-6 a^{2} + 4 a + 1)\)
Conductor norm \( 185 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 + 1);
 

Weierstrass equation

\( y^2 + x y + a^{2} y = x^{3} - a^{2} x^{2} + \left(-46 a^{2} + 5 a + 20\right) x + 91 a^{2} - 84 a - 126 \)
magma: E := ChangeRing(EllipticCurve([1, -a^2, a^2, -46*a^2 + 5*a + 20, 91*a^2 - 84*a - 126]),K);
 
sage: E = EllipticCurve(K, [1, -a^2, a^2, -46*a^2 + 5*a + 20, 91*a^2 - 84*a - 126])
 
gp (2.8): E = ellinit([1, -a^2, a^2, -46*a^2 + 5*a + 20, 91*a^2 - 84*a - 126],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((185,-6 a^{2} + 4 a + 1)\) = \( \left(a^{2} + 1\right) \cdot \left(3 a^{2} - a + 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 185 \) = \( 5 \cdot 37 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((253265,a + 2388,a^{2} - a + 120163)\) = \( \left(a^{2} + 1\right) \cdot \left(3 a^{2} - a + 1\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 253265 \) = \( 5 \cdot 37^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{41106476476641}{253265} a^{2} + \frac{3298915904486}{253265} a - \frac{20013184081503}{253265} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/4\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(a^{2} + 3 a : -2 a - 1 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} + 1\right) \) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\( \left(3 a^{2} - a + 1\right) \) \(37\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 185.1-A consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.